Résumé du cours d'Analyse

Inégalités

- Sommation des inégalités : Si $|x_i| \le 1$, alors $|\sum_{i=1}^n x_i| \le n$ avec égalité ssi $\forall i, x_i = 1$ ou $\forall i, x_i = -1$.
- Inégalité : $|xy| \leq \frac{1}{2}(x^2 + y^2)$). Exemple d'utilisation : Si f et $g \in L^2$, alors $fg \in L^1$.
- Inégalité triangulaire (cas d'égalité), inégalité de la moyenne (dans les sommes et dans les intégrales).
- Inégalités de Cauchy-Schwarz, de convexité, IAF et Taylor-Lagrange ; à défaut étude de fonctions.

Exemple : $(x_1 + x_2 + ... + x_n)^2 \le n(x_1^2 + x_2^2 + ... + x_n^2)$: par Cauchy-Schwarz, avec cas d'égalité.

- Si $f \geq 0$ continue, alors $\int_I f(t) \ dt \geq 0$, avec égalité ssi f est identiquement nulle.
- Borne supérieure : Pour $A \subset \mathbb{R}$ non vide, sup $A \leq m$ ssi A majorée par m. On a : $\alpha = \sup A$ ssi $\alpha \in A$ et $\alpha \in \overline{A}$.

Existence d'un maximum : Preuve directe (majorant et élément) ; utilisation de la compacité.

Étude locale

- Une propriété est vraie au voisinage d'un point ssi il existe un voisinage de a où elle est vraie.

Voisinage de $a \in \mathbb{R}$: $[a - \alpha, a + \alpha]$, voisinage de a^+ : $[a, a + \alpha]$, voisinage de $+\infty$: $[b, +\infty[$.

- Se ramener à des DL en 0 par x=a+h (et $h=\frac{1}{x}$ en $+\infty$); procéder par substitutions (et rarement avec Taylor-Young, sauf pour les fonctions usuelles).
- Equivalents : Recherche de limite, signe asymptotique. Ne jamais utiliser de + dans les équivalents.
- DL_0 = continuité ; DL_1 = dérivabilité. (si f dérivable p fois, où $p \ge 2$, on a DL_p , mais réciproque fausse).
- Th de la limite monotone. Suites $u_{n+1} = f(u_n)$, avec f Id de signe constant et/ou avec f croissante.
- $(u_n)_{n\in\mathbb{N}}$ converge existe ssi $\sum (u_{n+1}-u_n)$ converge ; f converge en b^- ssi il existe $\lim_{x\to b}\int_a^x f'(t)\ dt$.

Théorème de la bijection et théorème des valeurs intermédiaires

- Th de la bijection : Si $f: I \to \mathbb{R}$ est continue strictement monotone, $f: I \to f(I)$ bijection et f^{-1} continue.

Remarque : Si I=[a,b[, alors $f(I)=[f(a),\lim_{x\to b^-}f[$, et de même pour les autres cas d'intervalles.

- Zéros : Etude de fonctions, TVI, théorème de Rolle, racines d'un polynôme.

L'étude des variations et le TVI permettent de localiser les zéros (notamment pour les polynômes).

- Etude de suites définies implicitement. Exemple : $x^n = x + 1$: existence et unicité, DA.

Intégration

- Th fondamental du calcul différentiel : $f(x) = f(a) + \int_a^x f'(t) \ dt$, $F: x \longmapsto \int_a^x f(t) \ dt$ est C^1 , et F' = f.
- Intégrations par parties : f continue et g de classe C^1 : $\int_a^b fg = [Fg]_a^b \int_a^b Fg'$.
- Changements de variables : $\int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_{\alpha}^{\beta} f(\varphi(u)) \varphi'(u) du$.
- Formule de Taylor-Lagrange avec reste intégral : $f(x) = P_n(x) + \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$.
- IAF : $|e^{ix} e^{iy}| \le |x y|$; Taylor-Lagrange : $|\ln(1 + x) x| \le \frac{1}{2}x^2 \sup_{t \in [0, x]} \frac{1}{(1+t)^2}$.

Fonctions de classe C^{∞}

- Opérations algébriques, formule de Leibniz (exemple : la dérivée n-ième de $x^2f(x)$ contient 3 termes).
- Cas des séries entières : exemple $\frac{\sin x}{x}$ C^{∞} sur $\mathbb{R}.$

- Difféo : Si f C^p et f' ne s'annule pas, f est une bijection sur son image, f^{-1} C^p et $(f^{-1})' = \frac{1}{f' \circ f^{-1}}$.
- Th du prolongement C^1 . Si en 0^+ , $f'(x) = \lambda + \mathfrak{o}(1)$, alors $f(x) = \lambda x + \mathfrak{o}(x)$, donc f'(0) existe et vaut λ .

Intégrales impropres

- $\int_a^b f(t) \ dt$ converge ssi F converge en a^- et b^+ . Lorsque $f \ge 0$, on a $\int_a^b f(t) \ dt \in \mathbb{R} \cup \{+\infty\}$, car F croissante.
- Exemples classiques : $\int_0^{+\infty} e^{-\lambda t} dt$, intégrales de Riemann : $\int_1^{+\infty} \frac{dt}{t^{\alpha}}$ avec $\alpha > 1$; $\int_0^1 \frac{dt}{t^{\alpha}}$ (et $\int_a^b \frac{dt}{(t-a)^{\alpha}}$) avec $\alpha < 1$.
- f intégrable sur I ssi $\int_{I} |f(t)| dt < +\infty$. Dans ce cas, $\int_{I} f(t) dt$ existe (intégrale abs convergente).

Remarque: La notation $\int_I g(t) \ dt < +\infty$ n'a de sens que si g positive sur I. Elle est HP officiel.

- Comparaisons entre intégrales de fonctions positives : penser d'abord aux équivalents, puis aux O(...).

Exemple: $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt$ converge ssi $\alpha > 0$.

- Les intégrations par parties se font en toute rigueur sur des segments. On a $\int_a^b fg = [Fg]_a^b - \int_a^b Fg'$.

En tout cas, il faut que (au moins) deux termes sur les trois convergent.

- Les changements de variables valables directement mais pour φ bijection de classe C^1 :

 $\int_I f(t) dt$ cv ssi $\int_{\varphi^{-1}(I)} f(\varphi(u)) \varphi'(u) du$ cv, et dans ce cas, les intégrales sont égales.

- Intégrales semi-convergentes : $\int_1^{+\infty} \frac{\sin t}{t} \ dt$: IPP sur [1,x] pour justifier la convergence.
- Une fonction intégrable sur $[0, +\infty[$ ne converge pas nécessairement vers 0 en $+\infty$.

Séries

- Série = suite des sommes partielles, $\sum_{n\in\mathbb{Z}}a_n$ converge ssi les deux séries $\sum_{n\in\mathbb{N}}a_n$ et $\sum_{n\in\mathbb{N}^*}a_{-n}$ convergent.
- Comparaisons entre séries et intégrales (dans le cas des fonctions monotones).
- Comparaisons entre séries à termes positifs : penser d'abord aux équivalents, puis aux O(...).
- Toute série absolument convergente est convergente : Ainsi, si $a_n = O(\frac{1}{n^2})$, alors $\sum a_n$ cv (absolument).
- Critère spécial des séries alternées (les sommes partielles forment deux suites adjacentes); majoration des restes.

Dans le cas de séries dont le signe alterne, utiliser le critère spécial, en décomposant (DL) si nécessaire :

Remarque : Si $a_n = \frac{(-1)^n}{\sqrt{n}} + \varepsilon_n$, avec $\varepsilon_n \sim \frac{1}{n}$, $\sum a_n$ diverge ssi $\alpha > 1$ (alors qu'on a $a_n \sim \frac{(-1)^n}{\sqrt{n}}$).

On effectue un DL jusqu'à obtenir un reste admettant un équivalent de signe constant (cf séries à termes positifs).

Suites de fonctions $(f_n)_{n\in\mathbb{N}}$

- Théorème d'interversion des limites. Continuité : Si $(f_n)_{n\in\mathbb{N}}$ fonctions continues converge uniformément vers f (sut tout segment), alors f est continue.
- Intégration sur un segment : Si $(f_n)_{n\in\mathbb{N}}$ fonctions continues cv uniformément vers f, alors $\int_J f = \lim_{n\to+\infty} \int_J f_n$.
- Dérivation : Si $(f_n)_{n\in\mathbb{N}}$ suite de fonctions C^1 converge vers f et si $(f'_n)_{n\in\mathbb{N}}$ cv uniformément vers g, alors f'=g.

Remarque: De plus, $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers f sur tout segment.

Cas des fonctions C^{∞} : On demande la cv uniforme des dérivées (d'ordre assez grand).

Séries de fonctions $\sum f_n$ (on suppose ici les f_n continues)

- Théorème de la double limite : Si $\sum f_n$ converge uniformément sur [a,b[et si $\lim_{x\to b} f_n(x) = \lambda_n$, alors $\lim_{x\to b} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \lambda_n$.

- Continuité et dérivation d'une série de fonctions. La condition d'uniformité porte sur la série des dérivées.
- La convergence normale sur I (c'est-à-dire $\sum \sup_{I} |f_n| < +\infty$) implique la convergence uniforme de $\sum f_n$ sur I.

Attention: La cv normale sur tout segment inclus dans [0,1[n'implique pas la cv normale sur [0,1[. en revanche, si les f_n sont continues, on en déduit la continuité de la somme sur [0,1[.

- Exemple de convergence uniforme sans convergence normale : $\sum_{n\geq 1} \frac{(-1)^{n-1}}{n} x^n$ sur [0,1].

Théorème de convergence dominée et intégrales paramétrées

- Suite d'intégrales : $\lim_{n\to+\infty} \int_I f_n(t) dt = \int_I f(t) dt$, où $f(t) = \lim_{t\to+\infty} f_n(t)$: l'hypothèse de domination uniforme par rapport à n (pour n assez grand) : $|f_n(t)| \leq \varphi(t)$, avec $\varphi: I \to \mathbb{R}$ intégrable.
- Limite (en $+\infty$) d'une intégrale paramétrée $g(x)=\int_I f(x,t)\ dt$: utiliser caractérisation séquentielle.
- Continuité d'une intégrale dépendant d'un paramétre $g(x) = \int_I f(x,t) dt$.

Pour prouver g C^0 , on utilise la domination uniforme par rapport à $x: |f(x,t)| \le \varphi(t)$, avec $\varphi: I \to \mathbb{R}$ intégrable. Il suffit que la domination uniforme soit vraie sur tout segment (= sur un voisinage de chaque point).

Ne pas oublier la continuité des $x \longmapsto f(x,t)$ et l'intégrabilité) des $t \longmapsto f(x,t)$.

- Si I = [a, b[, Pour prouver que $\lim_{x\to b} g(x) = \int_I F(t) dt$, où $F(t) = \lim_{x\to b} f(x,t)$, on utilise la caractérisation séquentielle pour se ramener à une suite d'intégrales (et on applique le th de convergence dominée).

On considère une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de I tendant vers b, et on considère la suite $(g(x_n))_{n\in\mathbb{N}}$.

Hypothèse de domination : $\forall x \in V, |f(x,t)| \leq \varphi(t)$, avec $\varphi : I \to \mathbb{R}$ intégrable et V voisinage de b.

- Dérivation d'une intégrale dépendant d'un paramétre $g(x) = \int_I f(x,t) dt$.

Pour prouver g C^1 , l'hypothèse de domination porte sur $\frac{\partial f}{\partial x}$: on suppose $\forall x, \left| \frac{\partial f}{\partial x}(x,t) \right| \leq \varphi(t)$.

Ne pas oublier les autres hypothèses : les $x \longmapsto f(x,t)$ sont C^1 , et les $t \longmapsto f(x,t)$ sont intégrables.

Pour prouver g C^p , avec $p \ge 1$, l'hypothèse de domination porte sur la dérivées d'ordre p.

Intégration d'une série $\sum f_n$ de fonctions continues $f_n: I \to \mathbb{R}$.

- Si convergence uniforme (normale) et si I est un segment I=[a,b], alors $\int_I \sum_{n=0}^{+\infty} f_n = \sum_{n=0}^{+\infty} \int_I f_n$.
- ITT : Si $f = \sum_{n=0}^{+\infty} f_n$ continue (par morceaux) et $\sum_{n=0}^{+\infty} \int_I |f_n| < +\infty$, f intégrable et $\int_I f = \sum_{n=0}^{+\infty} \int_I f_n$.

S'il faut prouver la continuité de f, utiliser la convergence uniforme (ou normale) (sur tout segment).

- Pour les séries vérifiant le CSSA, on peut utiliser la cv dominée : $\int_I \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \int_I S_n$.

Séries entières

- Rayon de convergence : $R = \sup \{ \rho \in \mathbb{R}^+ \mid (a_n \rho^n)_{n \in \mathbb{N}} \text{ bornée } \}.$

R est l'unique réel tel que la série $\sum a_n z^n$ converge absolument pour |z| < R, et diverge si |z| > R.

- Critère de d'Alembert : On suppose $\lim_{n\to+\infty}\left|\frac{u_{n+1}}{u_n}\right|=k$. Si $k<1,\sum u_n$ cv abs ; si $k>1,\sum u_n$ diverge

On ne peut rien dire si k=1 (Raabe-Duhamel HP: si $\frac{u_{n+1}}{u_n}=1+\frac{\alpha}{n}+O(\frac{1}{n^2})$, alors $u_n\sim \lambda n^{\alpha}$, et $\sum u_n$ cv ssi $\alpha<-1$).

Application aux séries : S'il existe $\lim_{n\to+\infty} \left| \frac{a_{n+1}}{a_n} \right| = L$, alors le rayon de cv de $\sum a_n z^n$ vaut $\frac{1}{L}$.

- Séries lacunaires $\sum a_n z^{np+r} = z^r \sum a_n (z^p)^n$

Remarque : On peut appliquer d'Alembert à $\sum u_n$, avec $u_n = a_n z^{np+r}$, car $\left| \frac{u_{n+1}}{u_n} \right| = \left| \frac{a_{n+1}}{a_n} \right| |z|^p$.

- Produit de Cauchy de deux séries entières : le rayon de cv du produit est $\geq \min(R, R')$.
- Dérivées : Si $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, alors $f'(x) = \sum_{n=0}^{+\infty} (n+1) a_{n+1} x^n$ et $x f'(x) = \sum_{n=0}^{+\infty} n a_n x^n$.

Exemple:
$$\frac{1}{(1-x)^2} = \sum_{n=0}^{+\infty} (n+1)x^n$$
; $\frac{1}{(1-x)^{p+1}} = \frac{1}{p!} \sum_{n=0}^{+\infty} (n+1)...(n+p)x^n = \sum_{n=0}^{+\infty} {n+p \choose p} x^n$.

- On a aussi $a_n = f^{(n)}(0)/n!$, donc deux séries entières qui coïncident au voisinage de 0 sont égales.

Systèmes différentiels et équations différentielles linéaires

- Utilisation des séries entières pour déterminer des solutions d'équations différentielles.
- Equation différentielle linéaire résolue d'ordre 1 : y'(t) = a(t)y(t) + b(t).

Les solutions de (H): y'(t) = a(t)y(t) sont les $ke^{A(t)}:$ autrement dit, $Ker(D-a\operatorname{Id}) = \mathbb{R}e^{A(t)}$.

- Cas des équations différentielles à coefficients constants y''(t) + ay'(t) + by(t) = f(t).

Cas homogène : équation caractéristique. Cas d'un second membre polynôme-exponentiel $P(t)e^{\mu t}$: solution particulière $Q(t)e^{\mu t}$, avec deg $Q=m+\deg P$, où m ordre de multiplicité de γ de l'équation caractéristique.

Suites récurrentes linéaires

Suites de type Fibonacci : $u_{n+2} + au_{n+1} + bu_n = 0$: Solutions $\alpha \lambda^n + \beta \mu^n$ et $(\alpha + \beta n)\lambda^n$; cas général $X_{n+1} = AX_n$.

Espaces vectoriels normés

- Normes, normes équivalentes en dimension finie, limite (distance), limite dans un evn de dim finie.
- Limite (distance), adhérence, fermé, ouvert (deux définitions), fermé $\{(x,y) \mid f(x,y) \geq 0\}$ avec $f: \mathbb{R}^2 \to \mathbb{R}$ continue, intersection finie d'ouverts (ou de fermés), union infinie d'ouverts.

Compact = fermé borné : propriété des bornes atteintes (Weierstrass).

- Les applications linéaires en dimension finie vérifient $||u(x)|| \le k ||x||$, donc sont lipschitziennes (et continues).
- Normes sur $\mathcal{L}(\mathbb{R}^n)$ et $\mathcal{M}_n(\mathbb{R})$, normes d'algèbres. Norme subordonnée $N(A) = \sup_{X \neq 0} \frac{\|AX\|}{\|X\|}$.

Fonctions de plusieurs variables

- Continuité : caractérisation séquentielle, pincement : $|f(x) l| \le \varphi(||x||)$ et $\lim_{r\to 0} \varphi(r) = 0$.
- Applications de classe C^1 : Les dérivées partielles existent et sont continues.
- Si f est C^1 sur U, f admet un $DL_1(a)$: $f(a+h)=f(a)+u(h)+\mathfrak{o}(\|h\|)$. On pose $u(h)=df(x)\cdot h$.

Dans le cas des fonctions f à valeurs réelles, $u(h) = \nabla f(a) \cdot h$: forme linéaire.

- La matrice jacobienne $J_f(x)$ de $f: x \longmapsto (f_i(x))_{1 \leq i \leq n}$ est la matrice de df(x), c'est-à-dire $J_f(x) = \left(\frac{\partial f_i}{\partial x_j}\right)_{1 \leq i \leq n, 1 \leq j \leq p}$.
- Dérivée le long d'un chemin : La dérivée de $t \longmapsto f(\varphi(t))$ est $df(\varphi(t)) \cdot \varphi'(t)$. Ainsi, $f(x) = f(0) + \int_0^1 df(tx) \cdot x \ dt$.
- Plus généralement, la différentielle d'une composée $f \circ g$ est la composée des différentielles.

Règle de la chaîne : si
$$g(x) = f(y(x)) = f(y_1(x), ..., y_n(x))$$
, alors $\frac{\partial g}{\partial x_i}(x) = \sum_{j=1}^n \frac{\partial f}{\partial y_j}(y(x)) \frac{\partial y_j}{\partial x_i}(x)$.

- Extrema d'une fonction à valeurs réelles : sur un compact (= fermé borné), les bornes sont atteintes. En tout point intérieur où f admet un extremum (local), le gradient de f est nul (point critique).
- DL à l'ordre 2 d'une fonction $f:\mathbb{R}^n\to\mathbb{R}$ de classe C^2 : matrice Hessienne.

Condition suffisante de minimum local strict : grad $f(x_0) = \overrightarrow{0}$ et $H_f(x_0) \in S_n^{++}(\mathbb{R})$

Condition nécessaire de minimum local : grad $f(x_0) = \overrightarrow{0}$ et $H_f(x_0) \in S_n^+(\mathbb{R})$.