Oraux blancs. Série 6. Corrigé/Indications

1)
$$P(X = 1) = \sum_{n=1}^{+\infty} P(X = 1 \mid N = n) P(N = n).$$

N suit une loi géométrique (loi de premier succès) de paramètre $\frac{1}{2}$. On a $P(N=n)=\frac{1}{2^n}$.

D'autre part,
$$P(X = 1 \mid N = n) = \frac{1}{n}$$
. Donc $P(X = 1) = \sum_{n=1}^{+\infty} \frac{1}{n2^n} = -\ln\left(1 - \frac{1}{2}\right) = \ln 2$.

De même, pour tout $k \in \mathbb{N}^*$, on a $P(X = k) = \sum_{n \ge k} \frac{1}{n \cdot 2^n}$, car $P(X = k \mid N = n) = 0$ si k < n.

On en déduit
$$E(X) = \sum_{k=1}^{+\infty} k P(X=k) = \sum_{k=1}^{+\infty} \sum_{n=k}^{+\infty} \frac{k}{n2^n} = \sum_{n=1}^{+\infty} \sum_{k=1}^n \frac{k}{n2^n}$$
 (Fubini) $= \sum_{n=1}^{+\infty} \frac{n+1}{2^{n+1}}$.

Or, $\sum_{n=1}^{+\infty} \frac{n}{2^n} = 2$ (cf espérance d'une loi $G(\frac{1}{2})$), donc on obtient finalement $1 + \frac{1}{2} = \frac{3}{2}$.

Remarque culturelle : $\frac{n+1}{2}$ est en fait l'espérance de X sachant N=n, qu'on note parfois $E(X\mid N=n)$.

On a donc $E(X) = \sum_{n=1}^{+\infty} E(X \mid N=n) P(N=n)$ formule des espérances conditionnelles (hors-prog).

2) $X = \sum_{k=1}^{n} 1_{A_k}$, où A_k est l'événement " k admet au moins 3 antécédents par f ".

Le nombre Y d'antécédents d'un élément k suit la loi binomiale $\mathcal{B}(n, \frac{1}{n})$.

En effet, Y s'écrit sous la forme de n variables de Bernoulli indépendantes : $Y = \sum_{j=1}^{n} 1_{f(j)=k}$.

Donc
$$P(A_k) = 1 - \left(1 - \frac{1}{n}\right)^n - \binom{n}{1} \frac{1}{n} \left(1 - \frac{1}{n}\right)^{n-1} - \binom{n}{2} \left(\frac{1}{n}\right)^2 \left(1 - \frac{1}{n}\right)^{n-2}$$
.

On a
$$\lim_{n\to+\infty} P(A_k) = 1 - \left(1 + 1 + \frac{1}{2}\right)e^{-1} = \left(1 - \frac{5}{2e}\right).$$

On en déduit que $E(X) \sim \lambda n$, où $\lambda = 1 - \frac{5}{2e}$.

3) Soit λ une valeur propre de A.

Il existe alors X non nul tel que $\forall i \in [1, n], \sum_{j=1}^n a_{ij} x_j = \lambda x_i$, d'où $|\lambda - a_{ii}| |x_i| \leq \sum_{j \neq i} |a_{ij}| |x_j|$.

On choisit i tel que $|x_i| = \max(|x_j|)$. On a $|x_i| > 0$ car X non nul.

Comme $|a_{ii}| > 2\sum_{j\neq i} |a_{ij}|$, alors $|\lambda - a_{ii}| > \frac{1}{2} |a_{ii}|$. Donc a fortiori $|a_{ii}| > \frac{1}{2} |a_{ii}| \ge \mu$.

Comme la propriété est vraie pour toute racine λ de χ_A , on a $|\det A| \geq \mu^n$.

4) Le principe est d'essayer d'écrire f'(t) - f(t) sous une forme plus sympathique : c'est le principe même de la variation de constante dans la résolution des équation différentielle y' - y = g(t).

On peut aussi interpréter la méthode en notant que f'(t) - f(t) apparaît lorsqu'on dérive $f(t)e^{-t}$.

Plus précisement,
$$f'(t) - f(t) = g'(t)e^t$$
, où $g(t) = f(t)e^{-t}$. On a $g(0) = 0$ et $g(1) = e^{-1}$.

Lorsque f décrit l'ensemble des fonctions de classe C^1 vérifiant f(0) = 0 et f(1) = 1, l'application g décrit l'ensemble des fonctions de classe C^1 vérifiant g(0) = 0 et $g(1) = e^{-1}$.

On a donc
$$\int_0^1 |f'(t) - f(t)| dt = \int_0^1 |g'(t)| e^t dt$$
.

On a
$$\int_0^1 |g'(t)| e^t dt \ge \int_0^1 |g'(t)| dt \ge \left| \int_0^1 g'(t) dt \right| = g(1) = e^{-1}$$
, car $f(0) = 0$ et $f(1) = 1$.

Donc e^{-1} est un minorant. On va montrer qu'on peut l'approcher arbitrairement près.

Pour approcher cette valeur, on prend des fonctions g continues croissantes de classe C^1 telles que g' est nulle en dehors d'un intervalle $[0, \varepsilon]$. On prend par exemple g' positive, affine par morceaux, avec g'(t) affine sur $[0, \varepsilon]$ et nulle sur $[\varepsilon, 1]$, et de sorte que $\int_0^\varepsilon g'(t) dt = e^{-1}$.

Autrement dit, $g'(t) = \frac{2e^{-1}}{\varepsilon^2} (\varepsilon - t)$ si $t \in [0, \varepsilon]$ et g'(t) = 0 si $t \ge \varepsilon$.

Dans ce cas $g(t) = \int_0^t g'$ vérifie bien les propriétés requises.

On a alors $\int_0^1 |g'(t)| e^t dt = \frac{2e^{-1}}{\varepsilon^2} \int_0^\varepsilon (\varepsilon - t) e^t dt$ est compris entre e^{-1} et $e^{-1}e^\varepsilon$.

En faisant tendre ε vers 0^+ , on obtient bien e^{-1} comme valeur limite (ici borne inf non atteinte).

5) a) En dimension 1 : On cherche un cercle d'équation $x^2 + (y-a)^2 = a^2$ avec $a \neq 0$, c'est-à-dire $x^2 + y^2 - 2ay = 0$.

Pour avoir f au-dessous du cercle, il faut a > 0 et (x, f(x)) en dehors du cercle pour tout $x \in [-a, a]$.

On veut donc a > 0 et $x^2 + y^2 - 2ay \ge 0$. Il suffit donc d'avoir $\forall x \in [-a, a], x^2 - 2af(x) \ge 0$.

Or, par l'inégalité de Taylor-Lagrange, on a $\forall x \in [-1,1], f(x) \leq \frac{1}{2}Mx^2$, où $M = \sup_{[-1,1]} |f''|$.

On peut donc prendre $a = \min(1, \frac{1}{M})$.

Remarque : On peut aussi raisonner en utilisant Taylor-Young : $f(x) = \frac{1}{2}f''(0)x^2 + \mathfrak{o}(x^2)$.

Soit $\varepsilon > 0$. Il existe $\alpha > 0$ tel que $\forall x \in [-\alpha, \alpha], f(x) \leq Mx^2$, où $M = \frac{1}{2}f''(0) + \varepsilon$.

On peut donc prendre $a = \alpha$ si $M \le 0$ et $a = \min(\alpha, \frac{1}{M})$ si M > 0.

b) On a de même pour une sphère de centre (0,...,0,a): $\sum_{i=1}^{n} x_i^2 + y^2 - 2ay = 0$ dans \mathbb{R}^{n+1} .

Et on a $f(x) \leq \frac{1}{2}M(\sum_{i=1}^n x_i^2)$ sur un voisinage $[-\alpha, \alpha]$ de 0, en prenant $M > \sup_{\lambda \in \operatorname{Sp}(A)} \lambda_i$.

On peut donc prendre $a = \min(\alpha, M)$.

6) Faire un schéma! On considère $\lambda = \sup A$, où $A = \{x \mid f(x) \ge x\}$.

On a $0 \in A$ et A majorée par 1, donc λ existe.

 λ est adhérent à A : si $\lambda \in A$, alors $f(\lambda) \geq \lambda$;

Sinon, λ est limite d'une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A, donc $\lim_{\lambda^-} f \geq \lambda$, et a fortiori, $f(\lambda) \geq \lambda$.

Si $x > \lambda$, alors f(x) < x, donc $\lim_{\lambda^+} f \le \lambda$ (si $\lambda < 1$), et a fortiori, $f(\lambda) \le \lambda$. (vrai aussi si $\lambda = 1$).

Remarque: Si $x_{n+1} = f(x_n)$, $(x_n)_{n \in \mathbb{N}}$ est monotone, cv vers L, mais on a seulement $\lim_{L^-} f \leq L \leq \lim_{L^+} f$.

7) a) Pour pouvoir appliquer la cv dominée, il faut se ramener à des fonctions intégrables.

On utilise IPP: on a $\int_0^{+\infty} \frac{\sin t}{t} dt = \int_0^{+\infty} \frac{1 - \cos(t)}{t^2} dt$ et $\int_0^{+\infty} \frac{\sin(t)}{n(e^{t/n} - 1)} dt = \int_0^{+\infty} \frac{e^{t/n}(1 - \cos(t))}{n^2(e^{t/n} - 1)^2} dt$.

On a alors $\lim_{n\to+\infty} \frac{e^{t/n}(1-\cos(t))}{n^2(e^{t/n}-1)^2} = \frac{1-\cos(t)}{t^2}$.

Domination: $\frac{e^{t/n}(1-\cos(t))}{n^2(e^{t/n}-1)^2} \le \frac{1-\cos(t)}{n^2(e^{t/n}-1)(1-e^{-t/n})} = \frac{1-\cos(t)}{2n^2(\operatorname{ch}(t/n)-1)} \le \frac{1-\cos(t)}{t^2} = \varphi(t).$

b) On a
$$\int_0^{+\infty} \frac{\sin(t)}{e^{t/n} - 1} dt = \int_0^{+\infty} (\sin t) \left(\sum_{k=0}^{+\infty} e^{kt/n} \right) dt$$
. On a $\int_0^{+\infty} (\sin t) e^{kt/n} dt = \frac{1}{1 + (k/n)^2}$.

On conclut avec ITT mais en majorant $|\sin(t)|$ par t, car $\int_0^{+\infty} t e^{kt/n} du = O(\frac{1}{k^2})$ lorsque $k \to +\infty$.

c) On utilise une comparaison entre séries et intégrales appliquée à $t \longmapsto \frac{1}{1+(t/n)^2}$.

On a
$$\frac{1}{n} \int_0^{+\infty} \frac{dt}{1 + (t/n)^2} \le \frac{1}{n} \sum_{k=1}^{+\infty} \frac{1}{1 + (k/n)^2} \le \frac{1}{n} \int_0^{+\infty} \frac{dt}{1 + (t/n)^2} + 1.$$

Comme
$$\frac{1}{n} \int_0^{+\infty} \frac{dt}{1 + (t/n)^2} = \left[\arctan\left(\frac{t}{n}\right)\right]_0^{+\infty} = \frac{\pi}{2}.$$

8) On note m le nombre de chiffres de l'écriture en base 10 de $n = \varepsilon_0 + 10\varepsilon_1 + ... + 10^{m-1}\varepsilon_{m-1}$.

On a $10^{m-1} \le n$ (car ε_{m-1} le dernier chiffre du développement n'est pas nul). Ainsi, $m \le 1 + \frac{\ln n}{\ln 10}$.

Le produit p_n des chiffres de l'écriture en base 10 de $n \in \mathbb{N}$ vérifie $p_n \leq 9^m \leq 10^m = 10n$.

Ainsi, $p_n \leq 10n$. Ainsi, $p_n = O(n)$. On en déduit que $R \geq 1$.

Par ailleurs, il existe une infinité d'entiers n pour lesquels $p_n \in \mathbb{N}^*$, par exemple si $p_n = 10^p - 1$.

Donc $\sum p_n$ diverge et $R \leq 1$.

On en conclut R=1.

9) On a en particulier tr(S+D) = tr(D), donc tr(S) = 0.

Or, $\operatorname{tr}(S) = \sum_{i=1}^{n} \lambda_i$, avec λ_i valeurs propres de S. Comme $\lambda_i \geq 0$, alors $\lambda_i \geq 0$ pour tout i.

Comme S est diagonalisable, alors $S = O_n$.

Contre-exemple: S = Diag(1, -1) et D = Diag(0, 1). On a bien S + D et D semblables.

10) $D = B^3 + B$ est diagonalisable dans une base orthonormée.

Il suffit donc de prouver qu'étant donnée une matrice diagonale $D = \text{Diag}(\lambda_1, ..., \lambda_n)$, l'équation $A^3 + A = D$ admet une unique solution $A \in S_n(\mathbb{R})$. Supposons $A^3 + A = D$.

Les matrices A et D commutent, donc les sev propres E_{λ} de D sont stables par A.

En considérant les restrictions de A aux E_{λ} (qui sont aussi symétriques), on se ramène donc à résoudre une équation de la forme $A^3 + A = \lambda I_n$.

Or, le polynôme annulateur $P(X) = X^3 + X - \lambda$ admet une unique racine réelle μ (faire une étude de fonction), donc A admet μ comme unique valeur propre. Comme A est diagonalisable, $A = \mu I_n$.

Ainsi, l'unique solution est la matrice $A = \text{Diag}(\mu_1, ..., \mu_n)$, où $\mu j + \mu_j^3 = \lambda_j$.

Remarque : Il est beaucoup plus simple de prouver seulement que A et B ont les mêmes valeurs propres. En effet, les vp .de $A^3 + A$ sont les $P(\mu)$, où $\mu \in \operatorname{Sp}(A)$. Comme P bijectif, la connaissance des $P(\mu)$ détermine entièrement les μ .

11) On calcule le polynôme caractéristique : on développer selon la première colonne et par récurrence, mais il vaut mieux utiliser la méthode du pivot en prenant x supposé non nul comme pivot : on retranche à la dernière colonne les précédentes multipliées par $-\frac{a_j}{r}$.

On obtient une matrice triangulaire inférieure dont le dernier coefficient diagonal est $-\frac{1}{x}\sum_{i=1}^{n}a_{i}b_{i}$.

On obtient
$$\chi_M(x) = x^{n-1} \left(x - \frac{1}{x} \sum_{i=1}^n a_i b_i \right) = x^n - s x^{n-2}$$
, où $s = \sum_{i=1}^n a_i b_i$.

La relation est vraie aussi en x=0 (deux polynômes qui coïncident sur \mathbb{C}^* sont égaux).

On note par railleurs que rg $M \leq 2$, donc dim Ker $M = \dim E_0 \geq n-2$.

Premier cas : $s \neq 0$. La matrice M admet deux valeurs propres non nulles (les racines carrées de s).

La somme des dimensions des sev propres est donc (n-2)+1+1=n, donc M est diagonalisable.

Second cas: s = 0. Alors 0 est la seule valeur propre de M.

Donc M est diagonalisable ssi $M = O_n$, c'est-à-dire les a_i et b_i tous nuls.

Remarque: On pourrait aussi déterminer les valeurs propres en cherchant une CNS sur λ pour qu'il existe une solution X non nul tel que $MX = \lambda X$. En supposant $\lambda \neq 0$, on obtient la CNS: $\lambda = \frac{1}{\lambda} \sum_{i=1}^{n} a_i b_i$.

12) On a $||AB||_{\infty} \le n ||A||_{\infty} ||B||_{\infty}$ en utilisant $(AB)_{ik} = \sum_{j=1}^{n} a_{ij} b_{jk}$.

On conclut en utilisant l'équivalence des normes : on a $\alpha \|A\|_{\infty} \leq \|A\| \leq \beta \|A\|_{\infty}$, avec $\alpha > 0$.

Donc $||AB|| \le \beta ||AB||_{\infty} \le \frac{\beta}{\alpha^2} ||A|| ||B||$.

13) a) On a
$$\int_{n}^{+\infty} \frac{dt}{t^{\alpha}} \leq S_n \leq \int_{n-1}^{+\infty} \frac{dt}{t^{\alpha}}$$
, d'où on déduit par pincement $S_n \sim \frac{1}{\alpha - 1} \frac{1}{n^{\alpha - 1}}$.

b) On a
$$u_n = \frac{1}{n^2} - \int_n^{n+1} \frac{dt}{t^2} = \frac{1}{n^2} - \frac{1}{n(n+1)} = \frac{1}{n^2(n+1)} \sim \frac{1}{n^3}$$
.

Soit $\varepsilon > 0$. Pour n assez grand, $\frac{(1-\varepsilon)}{n^3} \le u_n \le \frac{(1+\varepsilon)}{n^3}$.

Donc
$$(1 - \varepsilon) \sum_{k=n}^{+\infty} \frac{1}{k^3} \le \sum_{k=n}^{+\infty} u_n \le (1 + \varepsilon) \sum_{k=n}^{+\infty} \frac{1}{k^3}$$
. Donc $\sum_{k=n}^{+\infty} u_n \sim \sum_{k=n}^{+\infty} \frac{1}{k^3} \sim \frac{1}{2n^2}$.

On en conclut que
$$S_n = \int_n^{+\infty} \frac{dt}{t^2} + \frac{1}{2n^2} + O\left(\frac{1}{n^2}\right) = \frac{1}{n} + \frac{1}{2n^2} + O\left(\frac{1}{n^2}\right)$$
.

14) On considère
$$a_n = \int_0^1 \left(\frac{1+t^2}{2} \right)^n dt$$
.

a) On a
$$\int_0^1 t \left(\frac{1+t^2}{2}\right)^n dt \le a_n \le \int_0^1 \left(\frac{1+t}{2}\right)^n dt$$
 en utilisant le fait que $t \in [0,1]$.

b) Or,
$$\int_0^1 t \left(\frac{1+t^2}{2}\right)^n dt = \frac{1}{2} \int_0^1 \left(\frac{1+u}{2}\right)^n du \sim \frac{1}{2n} \text{ et } \int_0^1 \left(\frac{1+t}{2}\right)^n dt \sim \frac{1}{n}.$$

Donc $\lim_{n\to+\infty} a_n = 0$ et $\sum a_n$ diverge.

D'autre part, $(u_n)_{n\in\mathbb{N}}$ est décroissante (car $\frac{1+t^2}{2} \leq 1$), donc $\sum (-1)^n a_n$ converge par le CSSA.

c)
$$\sum_{n=0}^{+\infty} (-1)^n a_n = \sum_{n=0}^{+\infty} \int_0^1 (-1)^n \left(\frac{1+t^2}{2}\right)^n dt = \int_0^1 \sum_{n=0}^{+\infty} (-1)^n \left(\frac{1+t^2}{2}\right)^n dt.$$

Pour justifier l'intégration terme à terme, on utilise la convergence dominée appliquée aux sommes partielles (et la domination par la fonction intégrable 1).

D'où
$$\sum_{n=0}^{+\infty} (-1)^n a_n = \int_0^1 \frac{dt}{1 + (1+t^2)/2} = \int_0^1 \frac{2 dt}{3+t^2} = \left[\frac{2}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right) \right]_0^1 = \frac{2}{\sqrt{3}} \frac{\pi}{6} = \frac{\pi}{3\sqrt{3}}.$$

15) a) Le nombre M d'échecs suit une loi binomiale $\mathcal{B}(n,p)$, avec $p=\frac{2}{100}$.

Donc $P(M \ge 1) = 1 - \left(\frac{98}{100}\right)^n$. On choisit donc n tel que $\left(\frac{98}{100}\right)^n \le \frac{1}{2}$.

b) Par Bienaymé-Tchebychev et la loi faible grands nombres, $\lim_{n\to+\infty} P\left(\left|\frac{M}{n}-\frac{1}{2}\right|\geq\varepsilon\right)=0.$

Pour $n \ge 40$, on a donc $P\left(M < 10\right) \le P\left(M < \frac{n}{4}\right) \le P\left(\left|\frac{M}{n} - \frac{1}{2}\right| \ge \frac{1}{4}\right)\right) \to 0$ lorsque n tend vers $+\infty$.

Autre méthode : Même principe qu'au a), avec ici $\sum_{k=0}^{9} \binom{n}{k} \left(\frac{98}{100}\right)^{n-k} \left(\frac{2}{100}\right)^k \to 0$ lorsque $n \to +\infty$.

16) Le polynôme annulateur $X^2 - 2(\cos \theta)X + 1$ admet comme racines $e^{i\theta}$ et $e^{-i\theta}$.

Donc les racines du polynôme caractéristique χ_A ne sont pas réelles.

Comme χ_A est réel, ses racines sont deux à deux conjuguées, donc n est pair.

De plus, A est diagonalisable sur \mathbb{C} , et semblable à $\operatorname{Diag}(e^{i\theta}, e^{-i\theta}, ..., e^{i\theta}, e^{-i\theta})$.

Chaque bloc $\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix}$ est semblable à $B = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$, car $\chi_B = X^2 - 2(\cos\theta)X + 1$.

Donc A est semblable (sur \mathbb{C}) à une matrice diagonale par blocs de blocs égaux à B.

Remarque : En fait, ces deux matrices sont semblables dans $\mathcal{M}_n(\mathbb{R})$: le plus simple est de choisir une base $(X_1,...,X_n,Y_1,...,Y_n)$, où les $Z_j=X_j+iY_j$ forment du base du \mathbb{C} -espace $\operatorname{Ker}(A-e^{i\theta}I)$.