Oraux blancs. Série 6

Oraux X-ESPCI-ENS

1) On lance une pièce équilibrée jusqu'à obtenir pile. On note N le nombre de lancers.

On tire un nombre aléatoirement entre 1 et N, que l'on note X. Calculer P(X = 1) et E(X).

2) Soit $n \in \mathbb{N}^*$. On note Ω l'ensemble des fonctions de [1, n] dans lui-même.

On munit Ω de la loi uniforme.

Pour $f \in \Omega$, on note X(f) le nombre d'éléments de [1, n] admettant au moins trois antécédents par f.

Déterminer un équivalent de E(X) lorsque n tend vers $+\infty$.

3) Soit $A \in \mathcal{M}_n(\mathbb{C})$ telle que $\forall i \in [1, n], |a_{ii}| \geq 2 \sum_{j \neq i} |a_{ij}|$.

Montrer que $|\det A| \ge \mu^n$, où $\mu = \frac{1}{2} \min_{1 \le i \le n} |a_{ii}|$.

4) On note E l'ensemble des fonctions de classe C^1 telles que f(0) = 0 et f(1) = 1.

Montrer que $\inf_{f \in E} \int_0^1 |f'(t) - f(t)| \ dt = e^{-1}$.

5) Soit $f: \mathbb{R}^n \to \mathbb{R}$ de classe C^2 telle que $f(\overrightarrow{0}) = 0$ et $\nabla f(\overrightarrow{0}) = \overrightarrow{0}$.

Montrer qu'il existe une sphère de \mathbb{R}^{n+1} (de rayon > 0) passant par $\overrightarrow{0}$ et située au-dessus du graphe de f.

6) Soit $f:[0,1] \to [0,1]$ croissante. Montrer que f admet un point fixe.

Oraux Centrale-Mines

- 7) a) Montrer que $\int_0^{+\infty} \frac{\sin t}{t} dt = \lim_{n \to +\infty} \int_0^{+\infty} \frac{\sin(t)}{n(e^{t/n} 1)} dt$.
- b) Montrer que $\int_0^{+\infty} \frac{\sin(t)}{e^{t/n} 1} dt = \sum_{k=0}^{+\infty} \frac{1}{1 + (k/n)^2}$.
- c) En déduire $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$.
- 8) On note p_n le produit des chiffres de l'écriture en base 10 de $n \in \mathbb{N}$.

Déterminer le rayon de convergence de la série $\sum p_n x^n$.

9) Soient $S \in S_n^+(\mathbb{R})$ une matrice symétrique réelle positive et $D \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale.

On suppose que S+D est semblable à D. Montrer que S est la matrice nulle.

La propriété est-elle vraie si on suppose seulement S symétrique ?

10) Soient $a_1, ..., a_n, b_1, ..., b_n \in \mathbb{C}$.

Donner une CNS pour que la matrice $M = \begin{pmatrix} 0 & 0 & 0 & a_1 \\ 0 & \cdots & 0 & \vdots \\ 0 & 0 & 0 & a_n \\ b_1 & \cdots & b_n & 0 \end{pmatrix} \in \mathcal{M}_{n+1}(\mathbb{C})$ soit diagonalisable.

11) Soit $\| \|$ une norme sur $\mathcal{M}_n(\mathbb{C})$.

Montrer qu'il existe c > 0 tel que $\forall (A, B) \in \mathcal{M}_n(\mathbb{R}), \|AB\| \le c \|A\| \|B\|$.

- **12)** a) Soit $\alpha > 1$. Trouver un équivalent de $S_n = \sum_{k=n}^{+\infty} \frac{1}{k^{\alpha}}$ lorsque n tend vers $+\infty$.
- b) Déterminer un développement asymptotique à deux termes de $S_n = \sum_{k=n}^{+\infty} \frac{1}{k^2}$ lorsque n tend vers $+\infty$.

 Indication: Commencer par déterminer un équivalent de $\frac{1}{n^2} \int_n^{n+1} \frac{dt}{t^2}$.
- **13)** On considère $a_n = \int_0^1 \left(\frac{1+t^2}{2}\right)^n dt$.
- a) Comparer a_n avec $\int_0^1 t \left(\frac{1+t^2}{2}\right)^n dt$ et $\int_0^1 \left(\frac{1+t}{2}\right)^n dt$.
- b) Etudier la limite de $(a_n)_{n\in\mathbb{N}}$, et la convergence des séries $\sum a_n$ et $\sum (-1)^n a_n$.
- c) Exprimer $\sum_{n=0}^{+\infty} (-1)^n a_n$ sous forme intégrale.
- **14)** a) Soit $n \geq 2$. Calculer le rang de $A = (\sin(i+j))_{1 \leq i \leq n, 1 \leq j \leq n} \in \mathcal{M}_n(\mathbb{R})$.
- b) Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice de rang 2. Calculer χ_A en fonction de $\operatorname{tr}(A)$ et de $\operatorname{tr}(A^2)$.
- 15) On réalise un lancer une fusée sachant que la probabilité d'échec vaut 0.02
- a) Déterminer le nombre n de lancers pour que la probabilité d'avoir au moins un échec dépasse $\frac{1}{2}$.
- b) Montrer qu'il existe n tel que la probabilité d'avoir au moins 10 échecs après n lancers soit ≥ 0.9
- **16)** Soit $\theta \in]0, \pi[$. Soit $A \in \mathcal{M}_n(\mathbb{R})$ vérifiant $A^2 2(\cos \theta)A + I_n = 0$. Montrer que n est pair.

Montrer que A est semblable (dans $\mathcal{M}_n(\mathbb{C})$) à une matrice diagonale par blocs où chaque bloc est une matrice de rotation d'angle θ .