Oraux blancs. Série 4. Indications

1) $(-1)^{n(n+1)/2}$ vaut 1 ssi 4 divise n(n+1), donc ssi 4 divise n ou n+1

La suite $((-1)^{n(n+1)/2})_{n\geq 1}$ est 4-périodique de période -1,-1,1,1.

On montre la convergence en appliquant le CSSA aux suites $(u_{2k+1})_{k\in\mathbb{N}}$ et $(u_{2k+2})_{k\in\mathbb{N}}$.

Variante : On regroupe les termes de même signe deux par deux :

$$S_{2n} = \sum_{k=1}^{n} (-1)^k \left(\frac{1}{\sqrt{(2k-1)(2k)}} + \frac{1}{\sqrt{2k(2k+1)}} \right)$$

On peut alors appliquer le critère des séries alternées, et on en déduit que $(S_{2n})_{n\geq 1}$ converge.

Comme de plus $\lim_{n\to+\infty} u_{2n+1} = 0$, on a aussi $\lim_{n\to+\infty} S_{2n+1} = 0$. Donc $\lim_{n\to+\infty} S_n = 0$.

2) a) Première méthode : en utilisant les polynômes annulateurs :

Tout polynôme annulateur de M annule aussi B, car $Q(M) = \begin{pmatrix} Q(1)I_n & * \\ \hline O_n & Q(B) \end{pmatrix}$.

Il existe un polynôme annulateur scindé à racines simples de M, donc de B, donc B diagonalisable.

Seconde méthode: On peut considérer $N = M - I_{2n} = \begin{pmatrix} O_n & A \\ \hline O_n & C \end{pmatrix}$, avec $C = B - I_n$.

L'intérêt est de se ramener au cas de la valeur propre 0 (qui est plus simple que 1, car on peut alors raisonner directement en termes de noyau, mais c'est ici un détail).

Si M est diagonalisable, N aussi, χ_N est scindé, donc χ_C est scindé.

Pour caractériser la diagonalisabilité, on utilise les dimensions.

En effet, on a N diagonalisable ssi $\sum_{\lambda} \dim \operatorname{Ker}(N - \lambda I_{2n}) = 2n$.

On cherche à calculer $\sum_{\lambda} \dim \operatorname{Ker}(C - \lambda I_n)$ pour savoir si C est diagonalisable.

Or, on a:

$$\begin{cases} \text{ si } \lambda \neq 0, \text{ on v\'erifie } \operatorname{rg}(N - \lambda I_{2n}) = n + \operatorname{rg}(C - \lambda I_n), \text{ donc } \dim \operatorname{Ker}(N - \lambda I_{2n}) = \dim \operatorname{Ker}(C - \lambda I_n) \\ \text{pour } \lambda = 0, \text{ on a : } \operatorname{rg}(N) \geq \operatorname{rg}(C), \text{ donc } \dim \operatorname{Ker} C \geq \dim \operatorname{Ker} N - n \end{cases}$$

Sachant $\sum_{\lambda} \dim \operatorname{Ker}(N - \lambda I_{2n}) = 2n$, on obtient $\sum_{\lambda} \dim \operatorname{Ker}(C - \lambda I_n) \ge n$, donc = n.

Donc C est diagonalisable.

b) **Première méthode**: On traite seulement le cas où B diagonalisable et $1 \notin \operatorname{Sp}(B)$.

On montre alors que M est diagonalisable (quelle que soit A).

On considère alors $P(X) = \prod_{\lambda \in \operatorname{Sp}(B)} (X - \lambda)$ scindé à racines simples et annulateur de B.

Alors Q(X) = (X - 1)P(X) est aussi scindé à racines simples.

On a
$$Q(M) = (M - I_{2n}) \times P(M) = P(M) \times (M - I_{2n}).$$

Or,
$$(M - I_{2n}) \times P(M) = \left(\begin{array}{c|c} O_n & * \\ \hline O_n & * \end{array}\right) \left(\begin{array}{c|c} * & * \\ \hline O_n & O_n \end{array}\right) = \left(\begin{array}{c|c} O_n & O_n \\ \hline O_n & O_n \end{array}\right)$$
, donc Q annule M .

Seconde méthode : La CNS est rg(N) = rg(C) d'après le calcul du a) pour la seconde méthode.

C'est le cas notamment lorsque C est inversible, c'est-à-dire B n'admet pas 1 comme valeur propre.

- 3) On a aussi $\lim_{n\to+\infty} \sin(nx) = 0$ et $\lim_{n\to+\infty} e^{inx} = 1$, donc $e^{ix} = \frac{e^{i(n+1)x}}{e^{inx}} \to 1$.
- 4) a) On fixe $x \in \mathbb{R}$ et $m \in \mathbb{N}$. On va montrer qu'il existe $\lambda_m = \lim_{n \to +\infty} \cos(\pi x m!)^n$ pour m assez grand.

Si $x \notin \mathbb{Q}$, $|\cos(\pi x m!)| < 1$, donc $\forall m \in \mathbb{N}$, $\lambda_m = 0$. Et D(x) = 0.

Supposons $x = \frac{p}{q} \in \mathbb{Q}$. Pour m assez grand, $xm! = \frac{p \cdot m!}{q}$ est un entier pair.

Il suffit de prendre par exemple $m \ge (q+2)$.

Donc pour m assez grand, $\cos(\pi x m!) = 1$, donc $\lambda_m = 1$, et ainsi, D(x) = 1.

b) Par a), D est la fonction caractéristique de \mathbb{Q} .

Ainsi, D n'est continue en aucun point x (car x est à la fois limite d'une suite de rationnels et d'une suite de irrationnels, car \mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R}).

- **5)** a) Faire un schéma. En déduire $\Delta(R) = (a+b)R + \pi R^2$.
- b) On a par inclusion $\Delta(R) \leq \Delta(R')$ pour tout r > 0.
- 6) On veut f(x+h) = f(x) + hf'(x) pour tous (x,h).

Rn prenant h=1, on vérifie (par récurrence) que f est nécessairement de classe C^{∞} .

En dérivant par rapport à h, on obtient la condition nécessaire f'(x+h) = f'(x), donc f' constante.

Réciproquement, les fonctios affines conviennent.

7) Par hypothèse, il existe une suite de couples distincts (x_n, y_n) tels que $P(x_n) + P(y_n) = 0$.

Pour x fixé, il existe un nombre fini de y tel que P(x,y) = 0.

Donc la suite $(x_n)_{n\in\mathbb{N}}$ prend une infinité de valeurs. Quitte à en extraire une suite extraite, on peut supposer $\lim_{n\to+\infty}|x_n|=+\infty$.

Supposons par l'absurde P de degré n pair.

Alors $P(x) \sim_{+\infty} x^n$ et $P(x) \sim_{-\infty} x^n$.

On a donc $\lim_{n\to+\infty} P(x_n) = +\infty$, donc $\lim_{n\to+\infty} P(y_n) = -\infty$, ce qui est absurde, car P est minorée.

- 8) a) Rayon $+\infty$ par le critère de D'Alembert.
- b) Soit $\varepsilon > 0$. Pour $n \ge p$ assez grand, on a $\frac{1}{p!} \le \varepsilon$.

Donc $\forall x \geq 0, \ 0 \leq f(x) \leq \sum_{n=0}^{p-1} \frac{x^n}{(n!)^2} + \varepsilon \sum_{n=p}^{+\infty} \frac{x^n}{n!}$. Posons $Q(x) = \sum_{n=0}^{p-1} \frac{x^n}{(n!)^2}$ polynôme.

On a ainsi $f(x)e^{-x} \leq Q(x)e^{-x} + \varepsilon$. Comme $\lim_{x \to +\infty} Q(x)e^{-x} = 0$, alors $f(x)e^{-x} \leq 2\varepsilon$ pour x assez grand.

9) Par convergence dominée, on a aisément $\lim_{n\to+\infty} I_n = 0$ (en dominant par $\varphi(t) = 1$).

Le maximum est atteint en t = e et vaut 1.

On utilise le changement de variable $\ln t = 1 - \frac{h}{n}$ (on peut aussi utiliser $(\ln t)^n = x$)...

On a donc
$$t = \exp(1 - h/n)$$
, donc $I_n = \frac{1}{n} \int_0^n \left(1 - \frac{h}{n}\right)^n \exp\left(1 - \frac{h}{n}\right) dh$.

On en déduit aisément $I_n \sim \frac{1}{n} \int_0^{+\infty} e \exp(-h) \ dh = \frac{e}{n}$.

10) $(u_n)_{n\in\mathbb{N}}$ est bien définie car [a,b] est stable par $g:x\longmapsto \frac{1}{2}(x+f(x))$.

On a $x_{n+1} - x_n = \frac{1}{2}(f(x_n) - x_n)$.

Et
$$|f(x_n) - x_n| = |f(x_n) - f(x_{n-1})| \le |x_n - x_{n-1}|$$
. Donc $|x_{n+1} - x_n| \le \frac{1}{2} |x_n - x_{n-1}|$.

Donc $\sum |x_{n+1} - x_n|$ converge (car en $O(2^{-n})$. Donc $\sum x_{n+1} - x_n$ converge, c'est-à-dire $(x_n)_{n \in \mathbb{N}}$ converge.

Posons $x = \lim_{n \to +\infty} x_n$. Par continuité de f, on a $x = \frac{1}{2}(x + f(x))$, c'est-à-dire x = f(x).

11) Posons
$$f_n(x) = \frac{x^n}{(1+x)...(1+x^n)}$$
.

En distinguant les cas $0 \le x < 1$, x = 1 et x > 1. on a $\lim_{n \to +\infty} f_n(x) = 0$.

- Pour
$$x \ge 1$$
, $f_n(x) \le \frac{1}{(1+x)...(1+x^{n-1})} \le \frac{1}{2^{n-1}}$.

Donc $\sum f_n$ cv normalement (donc uniformément) sur $[1, +\infty[$.

- Pour $0 \le x < 1, f_n(x) \le x^n$.

Donc $(f_n)_{n\in\mathbb{N}}$ normalement (donc uniformément) sur tout intervalle [0,a], avec a<1.

- (\bigstar) Il reste à étudier la convergence uniforme sur les intervalles $[1-\varepsilon,1]$. DIFFICILE en fait.

On note que
$$f_n(x) = g_{n-1}(x) - g_n(x)$$
, où $g_n(x) = \frac{1}{(1+x)...(1+x^n)}$.

Posons $g_{\infty}(x) = \lim_{n \to +\infty} g_n(x) = \frac{1}{\prod_{n=0}^{+\infty} (1+x^n)}$ qui est continue sur \mathbb{R}^+ et vaut 0 sur $[1, +\infty[$.

Par télescopage, on a donc $R_n(x) = \sum_{k=n+1}^{+\infty} f_k(x) = g_n(x) - g_{\infty}(x)$.

Il reste à étudier la convergence uniforme vers 0 de R_n sur l'intervalle [0,1].

La fonction $x \mapsto g_n(x)$ est décroissante et on a toujours $R_n(x) \leq g_n(x)$.

Donc pour tout $0 \le a < 1$, on a $R_n(x) \le \max(g_n(a), \sup_{[0,a]} R_n)$.

Soit $\varepsilon > 0$. on peut trouver a < 1 tel que $g_{\infty}(a) \leq \frac{1}{2}\varepsilon$.

Donc pour $n \ge n_1$ assez grand, $g_n(a) \le \varepsilon$, car $\lim_{n \to +\infty} g_n(a) = g_\infty(a)$.

Mais on a aussi $\sup_{[0,a]} R_n \leq \varepsilon$ pour $n \geq n_2$ assez grand.

Donc pour $n \ge \max(n_1, n_2)$, $R_n(x) \le \varepsilon$ pour tout $x \in [0, 1]$.

Il y a donc bien convergence uniforme sur [0,1].

Remarque: On peut évaluer $g_{\infty}(x)$ par comparaison avec une intégrale.

On a
$$\prod_{n=0}^{+\infty} (1+x^n) \le \exp\left(\int_0^{+\infty} \ln(1+x^t) \ dt\right) \le \prod_{n=0}^{+\infty} (1+x^n) \le \exp\left(\ln 2 + \int_0^{+\infty} \ln(1+x^t) \ dt\right)$$
.

Or,
$$g_{\infty}(x) = \int_0^{+\infty} \ln(1+x^t) dt = \frac{1}{\ln x} \int_0^1 \frac{\ln(1+u)}{u} du = \frac{1}{-\ln x} K$$
, où $K = \int_0^1 \frac{\ln(1+u)}{u} du = \frac{\pi^2}{12}$.

On en déduit que
$$\exp\left(\frac{K}{-\ln x}\right) \le g_{\infty}(x) \le 2 \exp\left(\frac{K}{-\ln x}\right)$$
.

12) Il s'agit finalement d'étudier le produit infini $\prod_{n\in\mathbb{N}} \frac{n+a}{n+b}$

a) On a par télescopages
$$u_n = u_0 \prod_{k=0}^{n-1} \frac{k+b-1}{k+b} = u_n = \frac{b-1}{n+b-1} \sim \frac{b-1}{n}$$
, donc $\sum u_n$ diverge.

b) On a
$$\frac{u_{n+1}}{u_n} = \frac{n+a}{n+b} = \left(1 + \frac{a}{n}\right) \left(1 + \frac{b}{n}\right)^{-1} = 1 + \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right)$$
, où $\alpha = a - b$.

Par le critère de Raabe-Duhamel (certes HP ...), il existe $\lambda > 0$ tel que $u_n \sim \lambda n^{\alpha}$.

Donc par comparaison, $\sum u_n$ converge ssi $\alpha < -1$, c'est-à-dire a < b - 1.

Supposons désormais a < b-1. Posons $S = \sum_{n=0}^{+\infty} u_n$.

On a $(n+b)u_{n+1} = (n+a)u_n$, c'est-à-dire $n(u_n - u_{n+1}) = bu_{n+1} - au_n$.

Or, on a (cf transformée d'Abel) :
$$\sum_{k=0}^{n} k(u_k - u_{k+1}) = \sum_{k=0}^{n} ku_k - \sum_{k=1}^{n+1} (k-1)u_k = \sum_{k=1}^{n} u_k - (n+1)u_{n+1}$$
.

Comme $\lim_{n\to+\infty} nu_n = 0$ (par l'équivalent trouvé), on obtient $\sum_{k=0}^n n(u_n - u_{n+1}) = S - 1$.

On obtient donc
$$S - 1 = b(S - u_0) - aS$$
, c'est-à-dire $S = \frac{b-1}{b-1-a}$.

Mieux : On écrit $nu_n - (n+1)u_{n+1} = au_n - bu_{n+1} - u_{n+1}$.

On a par télescopage $\sum_{k=0}^{n} (nu_n - (n+1)u_{n+1}) = 0 - 0$, car $\lim_{n \to +\infty} nu_n = 0$.

Donc
$$0 = (a - b - 1)S - (b - 1)u_0$$
, d'où $S = \frac{b - 1}{b - 1 - a}$.