Oraux blancs. Série 4

- 1) Déterminer la nature de la série de terme général $u_n = \frac{(-1)^{n(n+1)/2}}{\sqrt{n(n+1)}}$.
- **2)** a) On considère $M = \begin{pmatrix} I_n & A \\ \hline O_n & B \end{pmatrix} \in \mathcal{M}_{2n}(\mathbb{R})$ diagonalisable. Montrer que B est diagonalisable.
- b) Réciproquement, donner une CNS sur (A, B) pour que M soit diagonalisable.
- 3) On suppose $\lim_{n\to+\infty}\cos(nx)=1$. Montrer que $x\in 2\pi\mathbb{Z}$.
- **4)** a) Soit $x \in \mathbb{R}$. Justifier la définition suivante : $D(x) = \lim_{m \to +\infty} (\lim_{n \to +\infty} \cos(\pi x m!)^n)$.
- b) La fonction D est-elle continue?
- 5) a) Soit R un rectangle plein de \mathbb{R}^2 de côtés a et b. Soit r > 0. Calculer l'aire de $\Delta = \{x \in \mathbb{R}^2 \mid d(x, R) \leq r\}$.
- b) Soit R' un rectangle plein de \mathbb{R}^2 de côtés a' et b' tel que $R \subset R'$. Montrer que $a + b \leq a' + b'$.
- **6)** Déterminer les fonctions $f: \mathbb{R} \to \mathbb{R}$ de classe C^1 telles que pour tous $x \neq y$, $f'(x) = \frac{f(y) f(x)}{y x}$.
- 6) bis) Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que P(X+1) P(X) = P'(X).
- 7) Soit $P \in \mathbb{R}[X]$ polynôme unitaire tel que $\Delta = \{(x,y) \in \mathbb{Z}^2 \mid P(x) + P(y) = 0\}$ est infini.

Montrer que P est de degré impair.

- 8) a) Déterminer le rayon de convergence de la série entière $\sum \frac{x^n}{(n!)^2}$.
- b) On pose $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{(n!)^2}$. Montrer que $f(x) = \mathfrak{o}(e^x)$ lorsque x tend vers $+\infty$.
- 9) On considère $\forall n \in \mathbb{N}, I_n = \int_1^e (\ln t)^n dt$. Déterminer $L = \lim_{n \to +\infty} I_n$, puis un équivalent de $I_n L$.
- 10) Soit $f:[a,b] \to [a,b]$ une application 1-lipschizienne.

On considère $(x_n)_{n\in\mathbb{N}}$ définie par $x_0\in[a,b]$ et $x_{n+1}=\frac{1}{2}(x_n+f(x_n))$.

Montrer que $(x_n)_{n\in\mathbb{N}}$ est bien définie et converge vers un point fixe de f.

11) On considère pour $n \in \mathbb{N}$, $f_n : \mathbb{R}^+ \to \mathbb{R}$ $x \longmapsto \frac{x^n}{(1+x)(1+x^2)...(1+x^n)}$.

Etudier la convergence simple et uniforme de la série de fonctions $\sum f_n$.

- **12)** On considère a, b > 0 et $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 1$ et $u_{n+1} = u_n \frac{n+a}{n+b}$.
- a) On considère ici le cas a = b 1. Calculer u_n .
- b) Dans le cas général, montrer que $\sum u_n$ converge ssi a < b 1.

Montrer que dans ce cas $\sum_{n=0}^{+\infty} u_n = \frac{b-1}{b-1-a}$.

Indication: Utiliser $(n+b)u_{n+1} = (n+a)u_n$.