Oraux blancs. Série 3.

0) Soit $\varphi:[0,1]\to\mathbb{R}$ de classe C^2 .

On considère $u:[0,1]\times\mathbb{R}$ $(x,t)\longmapsto u(x,t)$ de classe C^2 vérifiant :

$$(E): \frac{\partial u}{\partial t}(x,t) = \frac{\partial^2 u}{\partial x^2}(x,t) \text{ et } u(x,0) = \varphi(x) \text{ et } u(0,t) = u(1,t) = 0.$$

- a) On considère $f(t) = \int_0^1 u(x,t)^2 dx$. Montrer que $f'(t) \le 0$.
- b) En considérant w = u v, montrer que si v vérifie aussi (E), alors u = v.
- 1) Déterminer le nombre maximal de 1 pour $A \in GL_n(\mathbb{Z})$ inversible à coefficients dans $\{0,1\}$.
- **2)** Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que $a_n \sim \alpha \ln n$ lorsque $n \to +\infty$, avec $\alpha > 0$.
- a) Montrer que la série de terme général $\exp(-a_n)$ converge si $\alpha > 1$ et diverge si $\alpha < 1$.
- b) Peut-on conclure si $\alpha = 1$?
- 3) Soient p et q projecteurs orthogonaux. Montrer que $p \circ q = 0$ implique $q \circ p = 0$.
- 4) On considère une urne contenant n boules numérotées de 1 à n, dans laquelle on effectue n tirages successifs sans remise. On note X_k le numéro de la boule tirée à la k-ième étape. On dit qu'il y a un pic à la k-ième étape si $X_k > \max(X_1, ..., X_{k-1})$. On convient qu'il y a toujours un pic au premier tirage.
- a) On note S_n le nombre de pics au cours des n tirages. Déterminer $P(S_n = 1)$ et $P(S_n = n)$.
- b) Donner l'espérance de S_n .
- 5) Soient X et Y deux v.a. entières indépendantes et de même loi.

Dans quels cas X + Y et 2X ont-elles même loi?

6) Soit $f:[0,+\infty[$ de classe C^1 . On suppose f(0)=0 et $\int_0^{+\infty} (f')^2 < +\infty$.

Montrer que
$$\int_0^{+\infty} \left(\frac{f(t)}{t}\right)^2 dt$$
 existe et que $\int_0^{+\infty} \left(\frac{f(t)}{t}\right)^2 dt \le 4 \int_0^{+\infty} (f'(t))^2 dt$.

- 7) Soit $\alpha > -1$. Trouver un équivalent de $I_n = \int_0^1 (1-t)^n t^{\alpha} dt$ lorsque n tend vers $+\infty$.
- 8) Soit $f:[0,+\infty[\to\mathbb{R} \text{ continue.}]$

On note A l'ensemble des $a \in \mathbb{R}$ telles qu'il existe $(x_n)_{n \in \mathbb{N}}$ tendant vers $+\infty$ telle que $\lim_{n \to +\infty} f(x_n) = a$.

Montrer que A est un intervalle fermé.

- 9) Soit $f:[0,a]\to [0,b]$ bijection croissante C^1 . Calculer $\int_0^a f(x)\ dx + \int_0^b f^{-1}(x)\ dx$.
- 10) On note D l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$, avec $n \geq 2$.
- a) L'ensemble D est-il un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$?
- b) Soit V un sev de $\mathcal{M}_n(\mathbb{R})$ inclus dans D. Montrer que dim $V \leq \frac{1}{2}n(n+1)$, et donner un cas d'égalité.
- 11) Soit $A \in \mathcal{M}_2(\mathbb{C})$. On pose $K = \{ \lambda \in \mathbb{C} \mid A \text{ et } \lambda A \text{ semblables } \}$.

Montrer que K est infini ssi A est nilpotente.

- 12) Déterminer les fonctions continues vérifiant $(E): \forall x \in \mathbb{R}, f(f(x)) = f(x) + 1.$
- 13) Déterminer les matrices $A \in \mathcal{M}_3(\mathbb{C})$ telles que A et -A soient semblables.
- **14)** Existence de $J = \int_0^1 \ln(t) \ln(1-t) \ dt$, et montrer que $J = \sum_{n=1}^{+\infty} \frac{1}{n(n+1)^2}$.
- **15)** Soit P un polynôme réel. On pose $M: \mathbb{N}^* \to \mathbb{R}$ $n \longmapsto \sum_{k=1}^n P(k)$.

Montrer que M est une fonction polynomiale en n.

- **16)** On suppose F, G et H sev de E. On pose $n = \dim E$. On suppose : $\dim F + \dim G + \dim H > 2n$ Montrer que $F \cap G \cap H$ contient un vecteur non nul.
- 17) Montrer que tout sev est intersection d'hyperplans.
- **18)** Soient A et $B \in \mathcal{M}_3(\mathbb{R})$ telles que det $A = \det B = \det(A + B) = \det(A B) = 0$.

Montrer que $\forall (x,y) \in \mathbb{R}^2$, $\det(xA + yB) = 0$.

19) Soit $A \in \mathcal{M}_n(\mathbb{R})$ matrice de rang r vérifiant $A = A^T = A^2$.

Montrer qu'il existe $(Z_1,...,Z_r)$ famille de vecteurs de \mathbb{R}^n telle que $A = \sum_{j=1}^r Z_j Z_j^T$.

- **20)** Soient A et B projections orthogonales. Montrer que $Sp(A+B) \subset [0,2]$.
- **21)** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $A^T A$ et AA^T sont semblables.
- 22) a) Que dire d'une v.a. indépendante d'elle même?
- b) Soit X une v.a. réelle positive telle que $0 < E(X^2) < +\infty$. Montrer que $P(X > 0) \ge \frac{E(X)^2}{E(X^2)}$.
- **23)** Soient une suite de réels positifs non nuls $(a_n)_{n\in\mathbb{N}}$ telle que $\forall n\neq m, |a_n-a_m|\geq 1$.

Montrer que la série $\sum \frac{1}{a_n^2}$ converge.

24) On considère $f: \mathbb{R} \to \mathbb{R}$ continue et convergeant vers 0 en $+\infty$. On rappelle que $\int_{+\infty}^{+\infty} e^{-u^2/2} du = \sqrt{2\pi}$.

On pose
$$\forall (x,t) \in \mathbb{R} \times \mathbb{R}_+^*$$
, $G(x,t) = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{+\infty} \exp\left(-\frac{(x-y)^2}{2t}\right) f(y) dy$.

Montrer que G est bien définie et bornée sur $\mathbb{R} \times \mathbb{R}_+^*$. Calculer $\lim_{x \to +\infty} G(x,t)$ et $\lim_{t \to 0} G(x,t)$.

- **25)** Soit $f:[0,+\infty[\to\mathbb{R}$ continue surjective. Montrer que f admet une infinité de zéros.
- **26)** a) Existe-t-il une fonction continue surjective de [0,1] sur]0,1[?
- b) Existe-t-il une fonction continue surjective de]0,1[sur [0,1] ?
- c) Soit f une fonction continue surjective de]0,1[sur [0,1]. Montrer que f n'est pas injective.
- **27)** Déterminer la dimension maximale d'un sev de $\mathcal{M}_n(\mathbb{C})$ inclus dans $\Delta = GL_n(\mathbb{C}) \cup \{O_n\}$.