Oraux blancs. Série 2. Indications

1) a) Posons $Y_n^- = \text{card}(\{X_i \mid X_i \le k\} \text{ et } Y_n^+ = \text{card}(\{X_i \mid X_i > k\}.$

On a $Y_n^- \le \operatorname{card}(\{1, 2, ..., k]) = k$ et $Y_n^+ \le \operatorname{card}\{i \mid X_i > k\} = \sum_{i=1}^n 1_{X_i > k}$.

Donc $y_n = E(Y_n^- + Y_n^+) = E(Y_n^-) + E(Y_n^+) \le k + E(\sum_{i=1}^n 1_{X_i > k}) = k + nP(X > k).$

Soit $\varepsilon > 0$. On choisit k de sorte que $P(X > k) \le \varepsilon$, qui existe car $\lim_{k \to +\infty} P(X > k) = 0$.

On a alors $y_n \leq k + n\varepsilon$. Pour *n* assez grand, $y_n \leq 2\varepsilon n$.

b) Par Markov, $P(X > k) \le \frac{E(X)}{k}$, et donc $y_n \le k + \frac{nE(X)}{k}$.

On conclut en prenant $k = \sqrt{n}$.

- 2) Noter A l'événement : "L'urne contient deux boules blanches" et B : "La première boule tirée est une boule blanche". On a $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B \mid \overline{A})P(A) + P(B \mid \overline{A})P(\overline{A})} = \frac{1 \times (1/2)}{1 \times (1/2) + (1/2) \times (1/2)} = \frac{2}{3}$.
- 3) L'idée est de considérer $N = \sum_{i=1}^{n} 1_{A_i}$, où A_i : le *i*-ième couple survit.

En effet, on ne cherche que l'espérance de N et non sa loi. Donc $E(N) = n \sum_{i=1}^{n} P(A_i)$.

La probabilité qu'un couple fixé survive est $\frac{\binom{2n-2}{r}}{\binom{2n}{r}} = \frac{(2n-r)(2n-r-1)}{2n(2n-1)}$.

Remarque : On peut aussi trouver cette probabilité sans passer par la combinatoire des parties :

En effet, en notant (x,y) ce couple et Δ l'ensemble des personnes décédées, on a :

$$P(x\notin\Delta,\,y\notin\Delta)=P(x\notin\Delta)P(y\notin\Delta\mid x\notin\Delta)=\tfrac{(2n-r)}{2n}\tfrac{(2n-r-1)}{(2n-1)}.$$

On en conclut que $E(N) = n \frac{(2n-r)(2n-r-1)}{2n(2n-1)} = \frac{(2n-r)(2n-r-1)}{2(2n-1)}$

4) a)
$$|\phi_n(x) - \phi(x)| = \left| E(\phi(S_n^{(x)}) - \phi(x)) \right| \le E\left(K \left| S_n^{(x)} - x \right| \right) \le KV(S_n^{(x)})^{1/2} \le \frac{K}{2\sqrt{n}}$$
.

b) Par th du transfert, $E(\phi(S_n^{(x)}) = \sum_{k=0}^n f(\frac{k}{n}) \binom{n}{k} x^k (1-x)^{n-k} = P_n(x)$ polynôme en x.

Donc pour toute fonction lispchitzienne ϕ sur [0,1], ϕ est limite uniforme de polynômes.

On en déduit pour toute fonction ψ sur [a,b], en considérant :

$$\phi(x) = \psi(a + x(b - a))$$
 et $Q_n(t) = P_n(\frac{t - a}{b - a})$ converge uniformément vers ψ sur $[a, b]$.

- 5) Deux bouts en moins à chaque étape. X_n est somme de n v.a. de Bernoulli de probabilité $\frac{1}{2N-1}$, $\frac{1}{2N-3}$, $\frac{1}{2N-5}$...
- **6)** Si $A' = P^{-1}AP$ et $B' = P^{-1}BP$, alors AB = BA ssi A'B' = B'A'.

Donc $C(A') = P^{-1}C(A)P$, et donc dim $C(A') = \dim C(A)$, car $\varphi : M \longmapsto P^{-1}MP$ isomorphisme.

On se ramène donc aux trois cas $A = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$, avec $\lambda \neq \mu$, $A = \lambda I_2$ et $A = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \lambda I_2 + J$.

Dans le premier cas, C(A) = sev des matrices diagonales (car sev propres stables par B).

Dans le dernier cas, $C(A) = C(J) = \text{Vect}(I_2, J)$.

Donc les dimensions possibles sont 2 et 4.

7) A et B commutent donc les sev propres de B sont stables par A.

On a $B = I_2 + \alpha S$, où $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est une matrice de symétrie orthogonale.

Donc
$$S = P \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} P^{-1}$$
, où $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$, et $B = P \begin{pmatrix} 1 + \alpha & 0 \\ 0 & 1 - \alpha \end{pmatrix} P^{-1}$.

Premier cas : $\alpha \neq 0$.

Comme les sev propres de B sont stables, alors $A = P\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix} P^{-1}$,

avec
$$P(\lambda) = 1 + \alpha$$
 et $P(\mu) = 1 - \alpha$, où $P(t) = t^3 + t$.

Le polynôme P induit une fonction bijective de \mathbb{R} sur \mathbb{R} (car P'(t) > 0 pour $t \in \mathbb{R}$).

Donc λ et μ sont uniques, donc A est unique.

Second cas: $\alpha = 0$.

On cherche donc A vérifiant $A^3 + A = I_2$.

Dans \mathbb{C} l'équation $z^3 + z = 1$ admet 3 racines α (réelles), β et $\overline{\beta}$ (avec β non réelle).

Comme A est réelle, on a nécessairement $\chi_A(z)=(z-\alpha)^2$ ou $\chi_A(z)=(z-\beta)(z-\overline{\beta})$.

Dans le premier cas, $A = \alpha I_2$ est l'unique solution, car sinon, A serait semblable à $N = \begin{pmatrix} \alpha & 1 \\ 0 & \alpha \end{pmatrix}$, qui ne vérifie pas

l'équation, car
$$A^3+A$$
 serait semblable à $N^3+N=\left(\begin{array}{cc} 1 & 3\alpha^2+1 \\ 0 & 1 \end{array}\right)\neq I_2.$

Dans le second cas, toute matrice réelle de polynôme caractéristique $(z - \beta)(z - \overline{\beta})$ convient, car diagonalisable dans \mathbb{C} et vérifie donc l'équation.

C'est le cas de la matrice
$$\begin{pmatrix} \operatorname{Re}\beta & -\operatorname{Im}\beta \\ \operatorname{Im}\beta & \operatorname{Re}\beta \end{pmatrix}$$
 et de la matrice compagnon $\begin{pmatrix} 0 & -|\beta|^2 \\ 1 & 2\operatorname{Re}\beta \end{pmatrix}$.

8) a) On pourrait se placer dans une base de vecteurs propres, et utiliser une matrice de Van de Monde.

Mais il y a mieux : Le polynôme $P(X) = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)$ annule A et est de degré < n.

Donc la famille $(I_n, A_n, A_n, A_n, A_n)$ est liée, et a fortiori, toute famille $(x, Ax, ..., A_n)$ l'est.

- b) Tout vecteur $x = \sum_{j=1}^{n} e_j$, où tous les α_i non nuls, convient : la matrice de la famille $(x, Ax, ..., A^{n-1}x)$ est inversible (matrice de Van der Monde).
- 9) u est une symétrie, et préciser les sev propres. En déduire tr $u = \frac{1}{2}n(n+1) \frac{1}{2}n(n-1) = n$.
- 10) Notons u l'endomorphisme associé à A.
- Posons $r = \operatorname{rg} A$. On a $r \in \{0, 1, 2\}$. Si $r = 0, A = O_3$.
- Supposons r = 1. On a $\text{Im } u \subset \text{Ker } u$ (sinon, $u_{\text{Im } u}$ serait bijective). On considère un supplémentaire $\mathbb{C}e_3$ de Ker u, puis $e_2 = u(e_3)$, puis e_1 tel que (e_1, e_2) est une base de Ker u.
- Supposons r=2. On a dim Ker u=1 et $u^2\neq 0$ et $u^3=0$.

On considère $e_3 \notin \operatorname{Ker} u^2$. On a $(e_3, u(e_3), u^2(e_3))$ base de $E = \mathbb{C}^3$.

10) bis) On a $\chi_{-A}(z) = \det(zI_3 + A) = -\chi_A(-z)$.

Comme A et -A sont semblables, alors $\chi_A(z) = z^3 - \alpha z$.

- Si $\alpha = 0$, A est nilpotente et on utilise 1) pour conclure que A et -A sont semblables.
- Si $\alpha \neq 0$, χ_A admet trois valeurs propres distinctes 0, λ et $-\lambda$, donc A est diagonalisable et ses valeurs propres sont deux à deux opposées, donc A et -A sont semblables.

Conclusion: Donc A et -A soient semblables ssi $\chi_A = \chi_{-A}$, donc ssi tr $A = \det A = 0$.

11) a) Il vaut mieux éviter de se lancer dans le calcul du polynôme caractéristique de M ...

On cherche donc les valeurs propres en résolvant les systèmes $MX = \lambda X$.

$$MX = \lambda X$$
 ssi (par blocs)
$$\begin{cases} X_2 = \lambda X_1 \\ AX_1 = \lambda X_2 \end{cases} \begin{cases} X_2 = \lambda X_1 \\ AX_1 = \lambda^2 X_2 \end{cases}$$

On a de plus $X \neq 0$, c'est-à-dire $(X_1, X_2) \neq (0, 0)$ ssi $X_1 \neq 0$ (du fait d ela relation $X_2 = \lambda X_1$).

On en déduit que λ est valeur propre de M ssi λ^2 est valeur propre de A.

On a alors
$$\operatorname{Ker}(M - \lambda I_{2n}) = \left\{ \begin{pmatrix} X_1 \\ \lambda X_1 \end{pmatrix}, X_1 \in \operatorname{Ker}(A - \lambda^2 I_n) \right\}.$$

En particulier, $\dim \operatorname{Ker}(M - \lambda I_{2n}) = \dim \operatorname{Ker}(A - \lambda^2 I_n)$

b) Notons $d_{\lambda} = \dim \operatorname{Ker}(M - \lambda I_{2n})$ et $d'_{\mu} = \dim \operatorname{Ker}(A - \mu I_n)$.

Par a), on a
$$d_{\lambda} = d'_{\mu}$$
, où $\mu = \lambda^2$.

On a M diagonalisable ssi $\sum_{\lambda} d_{\lambda} = 2n$, et A diagonalisable ssi $\sum_{\mu} d'_{\mu} = 2n$.

Chaque complexe μ non nul admet deux racines carrées λ et $-\lambda$.

Or, par a), on a
$$\sum d_{\lambda} = 2 \sum_{\mu \neq 0} d'_{\mu} + d_0$$
. De plus, $\sum_{\mu \neq 0} d'_{\mu} + d_0 \leq n$.

Donc $\sum d_{\lambda} = 2n \operatorname{ssi} \sum_{\mu \neq 0} d'_{\mu} = n \operatorname{et} d_0 = 0.$

Donc M diagonalisable ssi A diagonalisable et inversible.

Remarque : On a
$$M^{2k} = \begin{pmatrix} A^k & O_n \\ \hline O_n & A^k \end{pmatrix}$$
 et $M^{2k+1} = \begin{pmatrix} O_n & A^k \\ \hline A^{k+1} & O_n \end{pmatrix}$.

Ainsi, si $P(A) = O_n$, alors $P(M^2) = O_n$.

Si A est inversible et diagonalisable, alors on prend $P(X) = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)$ annule A, et $P(X^2)$ annule et est scindé à racines simples (ses racines sont les racines carrées des λ).

12) Traiter avec Cesaro le cas $a_n = \alpha$.

Traiter par majoration le cas $\lim_{n\to+\infty} a_n = 0$ en utuilisant le fait que $(u_n)_{n\in\mathbb{N}}$ est bornée.

Conclure par linéarité (avec $(a_n)_{n\in\mathbb{N}} = (\alpha)_{n\in\mathbb{N}} + (\varepsilon_n)_{n\in\mathbb{N}}$, où $\lim_{n\to+\infty} \varepsilon_n = 0$) que la limite est $\alpha\beta$.

13 a) On a nécessairement f(0) = 0.

D'autre part, $f\left(\frac{x}{2}\right) = \frac{1}{2}f\left(x\right)$, donc par récurrence immédiate $f\left(\frac{x}{2^n}\right) = \frac{1}{2^n}f\left(x\right)$.

Or,
$$\lim_{n\to+\infty} 2^n f\left(\frac{x}{2^n}\right) = xf'(0)$$
.

En effet, $f(u) = uf'(0) + \mathfrak{o}(u)$, donc $2^n f(2^{-n}x) = xf'(0) + \mathfrak{o}(1)$ lorsque $n \to +\infty$.

On en conclut que $\forall x \in \mathbb{R}, f(x) = \alpha x$, avec $\alpha = f'(0)$.

b) On a
$$ch(2x) = ch x^2 + sh^2 x$$
 et $sh(2x) = 2 sh x ch x$, donc $th(2x) = \frac{2 th x}{1 + th^2 x}$.

c) On effectue le changement de variable $g(x) = \operatorname{th}(f(x))$, valide car $f(x) \in]-1,1[$.

On obtient th(f(2x)) = th(2f(x)), c'est-à-dire f(2x) = 2f(x).

Comme g est dérivable en 0, alors f aussi. Donc par a), $f(x) = \alpha x$.

On en déduit $g(x) = th(\alpha x)$.

14) Posons $N = A^{-1}B$. La fonction f est constante ssi $f: t \longmapsto \det(I_n + tN)$ est este.

En trigonalisant N dans \mathbb{C} , on a $f(t) = \prod_{i=1}^{n} (1 + t\lambda_i)$.

On veut $\forall t \in \mathbb{R}, f(t) = 1$. Comme f es tun polynôme, ceci équivaut à $\forall t \in \mathbb{C}, f(t) = 1$.

Ce qui n'est vrai que si les λ_i sont nuls (sinon, f s'annule en au moins une valeur).

D'où la CNS : $\operatorname{Sp}(N) = \{0\}$ dans \mathbb{C} , donc ssi N est nilpotente, c'est-à-dire $\exists r \in \mathbb{N}^*$, $(A^{-1}B)^r = O_n$.

15) Comme A est inversible, alors B semblable à $-B = A^{-1}BA$, et B inversible.

Donc les racines du polynôme caractéristique de B sont 2 à 2 opposées, et non nulles, car B inversible, donc en nombre pair (comptées avec multiplicité), c'est-à-dire n pair.

Pour n pair, on construit aisément un exemple en considérant les blocs $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

On peut noter que lorsque deux matrices anticommutent, alors $A(E_{\lambda}) \subset E_{-\lambda}$, où E_{λ} sev de B.

16) Si u n'est pas une homothétie, il existe x tel que $y = u(x) \notin Kx$.

Considérer un hyperplan H contenant x et ne contenant pas y.

17) On note f(x) + f(y) - f(x)f(y) = -(1 - f(x))(1 - f(y)).

Donc
$$f(x+y) = f(x) + f(y) - f(x)f(y)$$
 équivaut à $1 - f(x+y) = (1 - f(x))(1 - f(y))$.

On pose g(x) = 1 - f(x). On cherche les fonctions continues vérifiant g(x + y) = g(x)g(y).

Si $g(x_0) = 0$, alors g est nulle. Sinon, g(x) > 0, car $g(x) = g(x/2)^2$.

En posant $G(x) = \ln g(x)$, on obtient G(x+y) = G(x) + G(y), donc G(x) = ax, où $a \in \mathbb{R}$.

On en conclut (réciproque immédiate) que les solutions sont 1 et $f(x) = 1 - \exp(ax)$, où $a \in \mathbb{R}$.

Remarque: Pour deviner les solutions, on peut aussi supposer f de classe C^1 .

On a alors nécessairement f'(x+y) = f'(x) - f'(x)f(y), donc f'(y) = b(1-f(y)), où b = f'(0).

Donc $f(y) = 1 + K \exp(-bx)$, et K = -1 car b = f'(0), donc $f(y) = 1 - \exp(ax)$, où a = -b.

18) On a de façon générale $\operatorname{Im}(A^T) = (\operatorname{Ker} A)^{\perp}$, donc ici $\operatorname{Im} A = (\operatorname{Ker} A)^{\perp}$.

Donc la restriction de A à $\operatorname{Im} A$ est un automorphisme, sans valeur propre réelle $\operatorname{carSp}(A) \subset \{0\}$.

Donc $\operatorname{Im} A$ est de dimension paire.

19) Utiliser les relations entre coefficients et racines.

20) a)
$$u_n \sim \frac{a}{n}$$
, où $a = \ln x$; b) $u_n = (-1)^{n+1} \frac{3\pi}{8n} + O\left(\frac{1}{n^2}\right)$

21) Preuve de type Cesàro.

On traite d'abord le cas $a_{n+1} - a_n = \mathfrak{o}(b_{n+1} - b_n)$.

On a alors $\forall n \geq p, |a_{n+1} - a_n| \leq \varepsilon (b_{n+1} - b_n)$, donc par télescopage, $\forall n \in \mathbb{N}, |a_n| \leq K + \varepsilon b_n$, où K constante.

Donc $|a_n| \leq 2\varepsilon b_n$ pour *n* assez grand, donc $a_n = \mathfrak{o}(b_n)$.

Cas général : On pose $a_n = Lb_n + \delta_n$. On a $\delta_{n+1} - \delta_n = \mathfrak{o}(b_{n+1} - b_n)$, donc $\delta_n = \mathfrak{o}(b_n)$ et $\frac{a_n}{b_n} \to L$.

22) a) La suite $(f_n(r))_{n\in\mathbb{N}}$ est croissante et $\forall n\geq 2, f_n(r)\leq (1+r^n)f_{n-1}(r)$.

Pour r < 1, le produit infini $\prod (1 + r^n)$ converge. D'où l'existence de F(r).

b) $f_n(r)$ est un polynôme en r.

De plus, la suite des coefficients de $f_n(r)$ de degré p est croissante et stationnaire en n pour $n \ge p$.

Notons a_p la valeur stationnaire.

Montrons que $\forall r \in [0,1[, F(r) = \sum_{k=0}^{+\infty} a_k r^k]$.

On a directement $\forall n \geq p, \sum_{k=0}^{p} a_k r^k \leq f_n(r) \leq \sum_{k=0}^{+\infty} a_k r^k$ (sous réserve que la série converge).

Donc $\sum_{k=0}^{p} a_k r^k \le F(r) \le \sum_{k=0}^{+\infty} a_k r^k$. Donc $\lim_{p\to+\infty} \sum_{k=0}^{p} a_k r^k$ existe (th de la limite monotone).

23) On pourrait prouver g de classe C^n par récurrence via le prolongement C^1 (très pénible).

Le plus élégant est d'utiliser $g(x) = \frac{1}{x} \int_0^1 f'(t) dt = \int_0^1 f'(\theta x) d\theta$, valable en x = 0.

On conclut en utilisant le th sur les intégrales paramétrées.

24) a)
$$X^{2n} - 1 = (X - 1)(X + 1) \prod_{k=0}^{n-1} (X^2 - 2\cos\left(\frac{k\pi}{n}\right)X + 1)$$
.

b)
$$\int_0^{\pi} \ln(1 - 2r\cos t + r^2) dt = \lim_{n \to +\infty} \frac{\pi}{n} \sum_{k=0}^{n-1} \ln(1 - 2r\cos(\frac{k\pi}{n}) + r^2)$$
 sommes de Riemann.

c) Pour
$$r > 1$$
, $\ln (r^{2n} - 1) - \ln(r^2 - 1) \sim \ln (r^{2n} - 1) \sim 2n \ln r$.

25) Les coefficients de Q_a sont les $P^{(k)}(a)/k!$. Or, pour tout $0 \le k \le n$, $P^{(k)}(a)/k! \to 1$ lorsque $a \to +\infty$.

26) On a
$$X_{n+1} = AX_n$$
, avec $X_n = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$ et $A = \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix}$ diagonalisable.

Donc u_n et v_n sont en $O(\lambda^n)$, où λ plus grande valeur propre en module de A, et $R \geq \frac{1}{|\lambda|}$.

Avec
$$f(x) = \sum_{n=0}^{+\infty} u_n x^n$$
 et $g(x) = \sum_{n=0}^{+\infty} v_n x^n$, $\begin{cases} f(x) = u_0 + x f(x) - x g(x) \\ g(x) = v_0 + x f(x) - 2x g(x) \end{cases}$, d'où on déduit $f(x)$ et $g(x)$.

27) S'il existe au moins une solution M de trace non nulle, la matrice A est symétrique.

Posons M = S + T, avec S symétrique et T antisymétrique. Alors M vérifie (*) ssi $S = \frac{1}{2}(\operatorname{tr} S)$ A

Donc $\Delta(O_n) = \{S + T, \text{ avec } S \text{ symétrique de trace nulle et } T \text{ antisymétrique } \}.$

Si $A \in S_n(\mathbb{R})$ de trace 2, $\Delta(A) = \{A + T, T \in \mathcal{A}_n(\mathbb{R})\}$, avec T antisymétrique (donc de trace nulle).

Dans les autres cas, $\Delta(A) = \{O_n\}.$

28) Pour |z| < 1, $|z|^{(n!)} \le |z|^n$, donc $\sum z^{(n!)}$ converge absolument et $R \ge 1$.

Pour |z| > 1, $\lim_{n \to +\infty} |z|^{(n!)} = +\infty$, donc $R \le 1$. D'où R = 1.