Oraux blancs. Série 2

1) Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de v.a. à valeurs dans \mathbb{N}^* de même loi.

On pose
$$Y_n = \text{card}\{X_1, X_2, ..., X_n\}$$
 et $y_n = E(y_n)$.

- a) Soit $k \in \mathbb{N}$. Montrer que $y_n \leq k + nP(X > k)$. En déduire $y_n = \mathfrak{o}(n)$.
- b) On suppose X d'espérance finie. Montrer que $y_n = O(\sqrt{n})$ lorsque $n \to +\infty$.
- 2) Une urne contient une boule blanche et une deuxième, blanche ou noire avec la probabilité $\frac{1}{2}$. On effectue deux tirages successifs sans remise. Calculer la probabilité d'obtenir une boule blanche au deuxième tirage sachant que le premier tirage a donné une boule blanche.
- 3) On considère n couples (2n personnes). r personnes décèdent.

Déterminer le nombre moyen N de couples restants.

- 4) a) Soit ϕ une fonction K-lispchitzienne sur [0,1]. Pour tout $x \in [0,1]$, on suppose connue une famille $(X_n^{(x)})_{n\geq 1}$ de variables aléatoires i.i.d. de loi de Bernoulli $\mathcal{B}(x)$. On pose, pour $n \in \mathbb{N}^*$, $S_n^{(x)} = \frac{1}{n}(X_1^{(x)} + ... + X_n^{(x)})$.
- On pose $\phi_n(x) = E(\phi(S_n^{(x)}))$. Montrer que $(\phi_n)_{n \in \mathbb{N}^*}$ converge uniformément vers ϕ sur [0,1].
- b) En déduire une preuve du théorème de Stone-Weierstrass pour les fonctions lipschitziennes : toute fonction lipschitzienne sur un segment [a, b] est limite uniforme de fonctions polynômes.
- 5) Un sac contient N cordes. A chaque étape, on choisit au hasard deux extrémités de cordes et on les noue. On dit qu'il y a une boucle si on a noué les extrémités d'une même corde.

Déterminer l'espérance du nombre X_n de boucles après n étapes.

- **6)** Soit $A \in \mathcal{M}_2(\mathbb{C})$. Déterminer les dimensions possibles de $C(A) = \{B \in \mathcal{M}_2(\mathbb{C}) \mid AB = BA\}$.
- 7) Résoudre $A^3 + A = B$ dans $\mathcal{M}_2(\mathbb{R})$, où $B = \begin{pmatrix} 1 & \alpha \\ \alpha & 1 \end{pmatrix}$ dans $\mathcal{M}_2(\mathbb{R})$.
- 8) Soit $A \in \mathcal{M}_n(\mathbb{R})$ diagonalisable.
- a) On suppose que χ_A admet une racine multiple. Montrer que pour tout $x \in \mathbb{R}^n$, $(x, Ax, ..., A^{n-1}x)$ est liée.
- b) On suppose que les racines de χ_A sont simples. Trouver $x \in \mathbb{R}^n$ tel que $(x, Ax, ..., A^{n-1}x)$ est une base de \mathbb{R}^n .
- 9) Calculer la trace de u, où $u: \mathcal{M}_n(K) \to \mathcal{M}_n(K)$ $A \longmapsto A^T$.
- 10) Soit $A \in \mathcal{M}_3(\mathbb{C})$ nilpotente.

Montrer que
$$A = O_3$$
 ou A semblable à $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ ou à $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

- 10) bis) Déterminer les matrices $A \in \mathcal{M}_3(\mathbb{C})$ pour que A et -A soient semblables.
- **11)** Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose $M = \begin{pmatrix} O_n & I_n \\ \hline A & O_n \end{pmatrix}$.
- a) Montrer que λ est valeur propre de M si et seulement si λ^2 valeur propre de A.
- b) Donner une CNS sur A pour que M soit diagonalisable.

12) Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites réelles. On suppose $\lim_{n\to+\infty}a_n=\alpha$ et $\lim_{n\to+\infty}b_n=\beta$.

Déterminer la limite de la suite de terme général $u_n = \frac{1}{n+1} \sum_{k=0}^n a_k b_{n-k}$.

- 13) a) Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ dérivables en 0 telles que f(2x) = 2f(x).
- b) Exprimer th(2x) en fonction de th(x).
- c) Déterminer les fonctions continues $g: \mathbb{R} \to]-1,1[$ dérivables en 0 telles que $g(2x)=\frac{2g(x)}{1+g(x)^2}$.
- **14)** Soient $A \in GL_n(\mathbb{R})$ et $B \in \mathcal{M}_n(\mathbb{R})$.

Montrer que $f: t \longmapsto \det(A + tB)$ est constante ssi $\exists r \in \mathbb{N}^*, (A^{-1}B)^r = O_n$.

- 15) Déterminer les $n \in \mathbb{N}^*$ pour lesquels il existe deux matrices A et $B \in GL_n(\mathbb{R})$ telles que $AB + BA = O_n$.
- 16) Soit E un ev de dimension finie. Déterminer les $u \in \mathcal{L}(E)$ laissant stable tout hyperplan de E.
- 17) Déterminer les fonctions continues $f: \mathbb{R} \to \mathbb{R}$ vérifiant f(x+y) = f(x) + f(y) f(x)f(y).
- 18) Soit $A \in \mathcal{M}_n(\mathbb{R})$ antisymétrique. Montrer que rg A est pair.
- **19)** Déterminer $f(\mathbb{R}^2)$, où f(x,y) = (x+y,xy).
- **20)** Déterminer la nature des séries $\sum u_n$ et $\sum v_n$ définies par :
- a) $u_n = x^{1/n} 1$, où x > 0
- b) $v_n = \cos(\pi \sqrt{n^2 + n + 1})$
- **21)** Soit $(b_n)_{n\in\mathbb{N}}$ une suite strictement croissante telle que $\lim_{n\to+\infty}b_n=+\infty$.

Soit $(a_n)_{n\in\mathbb{N}}$ telle que $\lim_{n\to+\infty}\frac{a_n-a_{n-1}}{b_n-b_{n-1}}=L$. Montrer que $\lim_{n\to+\infty}\frac{a_n}{b_n}=L$.

- **22)** On considère $f_n(r)$ définie par $f_0(r) = 0$, $f_1(r) = r$ et $\forall n \geq 2$, $f_n(r) = f_{n-1}(r) + r^n f_{n-2}(r)$.
- a) Justifier l'existence de $F(r) = \lim_{n \to +\infty} f_n(r)$ pour tout $r \in [0, 1[$.
- b) Montrer que F est DSE sur [0, 1[.
- **23)** Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} telle que f(0) = 0. Montrer que $g: x \to \frac{f(x)}{x}$ est C^{∞} .
- **24)** (X-ESPCI) a) Soit $n \in \mathbb{N}^*$. Factoriser $X^{2n} 1$ dans $\mathbb{R}[X]$.
- b) Soit r > 1. Montrer que $\int_0^{\pi} \ln(1 2r\cos t + r^2) dt = \lim_{n \to +\infty} \frac{\pi}{n} \ln\left(\frac{r^{2n} 1}{r^2 1}\right)$.
- c) En conclure que pour tout r > 1, on a $\int_0^{\pi} \ln(1 2r\cos t + r^2) dt = 2\pi \ln r$.
- **25)** (X-ESPCI) Soit $P \in \mathbb{R}_n[X]$ unitaire. Pour $a \in \mathbb{R}$, on pose $Q_a(X) = P(X + a)$.

Montrer que pour a assez grand, tous les coefficients de Q_a sont positifs.

26) (*Mines*) On considère $(u_0, v_0) \neq (0, 0)$, et $\forall n \in \mathbb{N}, u_{n+1} = u_n - v_n$ et $v_{n+1} = u_n - 2v_n$.

Déterminer les rayons de cv et les sommes de $\sum_{n=0}^{+\infty} u_n x^n$ et de $\sum_{n=0}^{+\infty} v_n x^n$.

- **27)** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Trouver l'ensemble $\Delta(A)$ des matrices $M \in \mathcal{M}_n(\mathbb{R})$ telles que $M + M^T = (\operatorname{tr} M)$ A.
- **28)** Déterminer le rayon de convergence de $\sum z^{(n!)}$.