Oraux blancs. Série 1. Indications:

1) On a P(1) = P'(1) = 0. Supposons par l'absurde $P(X) = aX^p + bX^q$, avec p < q.

Alors $\left\{ \begin{array}{l} a+b=1\\ pa+qb=1 \end{array} \right., \, \mbox{d'où } a=b=0, \, \mbox{ce qui contredit } P \mbox{ non nul}.$

Remarque : Plus généralement, via le système de Van der Monde donné par $P(1) = ... = P^{(n-1)}(1) = 0$, si $(X-1)^n$ divise P, alors P admet au moins (n+1) coefficients non nuls.

2) On raisonne par l'absurde.

Posons $E_n = (X_n = 1)$. On a donc pour tout $n \in \mathbb{N}$, $P(A \cap E_n) = 0$ ou 1.

Donc pour tout $n \in \mathbb{N}$, $(A \cap E_n = \emptyset \text{ ou } E_n \subset A)$.

Remarque : La notation $A \cap E_n = \emptyset$ est valide à condition de négliger les événéments négligeables.

En toute rigueur, il s'agit de $P(A \cap E_n) = 0$, c'est-à-dire $A \cap E_n$ négligeable.

Posons $J = \{n \in \mathbb{N} \mid A \subset \overline{E_n}\}$. On a $\forall n \notin J$, $E_n \subset A$.

Si J est infini, on a par continuité décroissante : $P(\cap_{n\notin J}\overline{E_n}) = \lim_{k\to+\infty} (1-p)^k = 0$

Comme $A \subset \bigcap_{n \notin J} \overline{E_n}, P(A) = 0.$

Si J est fini, alors $\mathbb{N}\setminus J$ est fini, et $P(\cup_{n\in J}E_n)=1-\lim_{k\to+\infty}(1-p)^k=1$.

Comme $\bigcup_{n\in J} E_n \subset A$, alors P(A) = 1.

D'où une contradiction avec 0 < P(A) < 1.

3) L'idée est de considérer $N = \sum_{i=1}^n 1_{A_i}$, où A_i : le i-ième couple survit.

En effet, on ne cherche que l'espérance de N et non sa loi. Donc $E(N) = n \sum_{i=1}^{n} P(A_i)$.

La probabilité qu'un couple fixé survive est $\frac{\binom{2n-2}{r}}{\binom{2n}{r}} = \frac{(2n-r)(2n-r-1)}{2n(2n-1)}$.

Remarque: On peut aussi trouver cette probabilité sans passer par la combinatoire des parties:

En effet, en notant (x,y) ce couple et Δ l'ensemble des personnes décédées, on a :

$$P(x \notin \Delta, y \notin \Delta) = P(x \notin \Delta)P(y \notin \Delta \mid x \notin \Delta) = \frac{(2n-r)}{2n}\frac{(2n-r-1)}{(2n-1)}.$$

On en conclut que $E(N) = n \frac{(2n-r)(2n-r-1)}{2n(2n-1)} = \frac{(2n-r)(2n-r-1)}{2(2n-1)}$.

4) A est inversible donc 0 n'est pas valeur propre de A.

Première solution : La polynôme scindé à racines simples $P(X) = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)$ annule A.

On a $P(M) = \begin{pmatrix} O & * \\ \hline O & O \end{pmatrix}$, donc MP(M) = 0. Ainsi, XP(X) scindé à racines simples annule M.

Autre solution:

On vérifie que si X est vecteur propre de A, alors le vecteur $Z = \left(\frac{X}{0}\right)$ est aussi vecteur propre de A.

Comme $X \mapsto Z$ est un isomorphisme, on en déduit une famille de vecteurs de M forment une base des vecteurs $\left(\frac{*}{0}\right)$, c'est-à-dire une base de $\text{Vect}(E_1...,E_r)$.

Par ailleurs, on vérifie que Ker(M) est un suppélmentaire de F de dimension (n-r).

En effet, on résout $M\left(\frac{X}{Y}\right) = 0$, et on obtient les solutions $\left(\frac{-A^{-1}BY}{Y}\right)$, avec Y arbitraire.

Ainsi, on a $F \oplus E_0 = \mathbb{C}^n$, donc M est diagonalisable.

5) On peut tout d'abord noter que des solutions naturelles sont les matrices de rotation d'angle $\frac{\pi}{2n}$ modulo $\frac{2\pi}{n}$.

Se placer dans $\mathcal{M}_2(\mathbb{C})$:

M commute avec $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, donc les sev propres de R sont stables par M.

En déduire que
$$M=\frac{1}{2}\left(\begin{array}{cc} 1 & i \\ i & 1 \end{array}\right)\left(\begin{array}{cc} \lambda & 0 \\ 0 & \mu \end{array}\right)\left(\begin{array}{cc} 1 & -i \\ -i & 1 \end{array}\right),$$

avec $\lambda^n = e^{i\pi/2}$ et nécessairement $\mu = \overline{\lambda}$ (car λ n'est pas réel et que $M \in \mathcal{M}_2(\mathbb{R})$).

 $\begin{aligned} & \textit{Variante}: \ \textit{M} \ \text{commute avec} \left(\begin{array}{c} 0 & -1 \\ 1 & 0 \end{array} \right), \ \text{donc (par calcul) est de la forme} \left(\begin{array}{c} a & -b \\ b & a \end{array} \right). \\ & \text{On a} \left(\begin{array}{c} a & -b \\ b & a \end{array} \right) = \rho \left(\begin{array}{c} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array} \right), \ \text{avec} \ \rho > 0. \ \text{Donc} \ \rho = 1 \ \text{et} \ n\theta = \frac{\pi}{2} \ [2\pi] \ . \end{aligned}$

6) On peut se limiter à l'étude de $\varphi: M \longmapsto \operatorname{tr}(AM)B$.

S'il y a un vecteur propre de valeur propre λ non nulle, ce vecteur est colinéaire à B.

Donc $\lambda = \operatorname{tr}(AB)$.

Il y a par ailleurs 0 comme valeur propre d'espace propre $\operatorname{Ker} \varphi = \{M \mid \operatorname{tr}(AM) = 0\}$, qui est un hyperplan de $\mathcal{M}_n(\mathbb{R})$.

Pour conclure, on distingue les cas $\lambda = 0$ (cas non diagonalisable) et $\lambda \neq 0$ (cas diagonalisable).

- 7) a) Par le th du transfert, $Q_n(x) = \sum_{k=0}^n P(\frac{k}{n}) \binom{n}{k} x^k (1-x)^{n-k}$.
- b) On a $G_{Z_{n,x}}(t) = (1 x + xt)^n$, donc $G_{Z_{n,x}}^{(d)}(1)$ polynôme en x de degré d.

On a aussi $G_{Z_{n,x}}^{(d)}(1) = \sum_{k=0}^{n} R_d(k) \binom{n}{k} x^k (1-x)^{n-k}$, où $R_d(k) = k(k-1)...(k-d+1)$.

Autrement dit, $G_{Z_{n,x}}^{(d)}(1) = E(Z_{n,x}(Z_{n,x}-1)...(Z_{n,x}-d+1)) = E(R_d(Z_{n,x}).$

Donc $E(Z_{n,x}^d)$ est combinaison linéaire (indépendante de x) des $G_{Z_{n,x}}^{(k)}(1)$, avec $k \leq d$.

Donc $Q_n \in \text{Vect}(R_0, R_1, ..., R_d)$.

c) On a
$$\forall \varepsilon > 0$$
, $\lim_{n \to +\infty} E\left(\frac{Z_{n,x}}{n}\right) = x$ et $\lim_{n \to +\infty} V\left(\frac{Z_{n,x}}{n}\right) = 0$.

L'application Q est lispchitzienne de rapport $M = \sup_{[0,1]} |Q'| \text{ sur } [0,1].$

Alors
$$\left| E\left(Q\left(\frac{Z_{n,x}}{n}\right) - Q(x)\right) \right| \le M. E\left(\left|\frac{Z_{n,x}}{n} - x\right|\right) \le M\sqrt{V\left(\frac{Z_{n,x}}{n}\right)}.$$

8) La meilleure solution est de considérer X comme une variable de comptage :

On a $X = \sum_{i=1}^{n} 1_{i \in A \cup B}$, donc par linéarité, $E(X) = \sum_{i=1}^{n} P(i \in A \cup B)$.

Or,
$$P(i \in A \cup B) = P(i \in A) + P(i \in B) - P(i \in A \cap B)$$
.

On a
$$P(i \in A) = \frac{2^{n-1}}{2^n} = \frac{1}{2}$$
, et de même $P(i \in B) = \frac{1}{2}$.

Par indépendance de A et B, on a $P(i \in A \cap B) = P(i \in A)P(i \in B) = \frac{1}{4}$.

Donc
$$E(X) = \frac{3}{4} n$$
.

Autre solution : Pour $C \subset [1, n]$, on calcule le nombre m_C de couples (A, B) tel que $A \cup B = C$.

On a
$$m_C = \sum_{A \subset C} \operatorname{card} \{B \mid B \subset A\} = \sum_{A \subset C} 2^A = \sum_{k=0}^{\operatorname{card} C} {\operatorname{card} C \choose k} 2^k = (1+2)^{\operatorname{card} C} = 3^{\operatorname{card} C}.$$

On a alors
$$E(X) = 4^{-n} \sum_{C} m_C \times \text{card } C = 4^{-n} \sum_{k=0}^{n} {n \choose k} k 3^k = \frac{3}{4} n$$
.

9) Remarque: Notons $\Delta = \{z \in \mathbb{C} \mid \exists n \in \mathbb{N}^*, z^n = 1\}.$

Ainsi, $\Delta = \bigcup_{n \in \mathbb{N}^*} U_n$.

Noter que $e^{i\theta} \in \Delta$ ssi $\theta \in 2\pi \mathbb{Q}$.

- a) Si $A \in E$, alors $\mathrm{Sp}(A) \subset \Delta \subset U$. Donc $E \subset F$.
- b) Il s'agit d'une preuve de la densité de \mathbb{Q} dans \mathbb{R} (on approche α par un multiple de $\frac{1}{n}$). Pour la preuve, il suffit d'encadrer $\lfloor n\alpha \rfloor$.

Soit $A \in F$. Il s'agit de prouver que A est limite d'une suite d'éléments de E.

$$A = PBP^{-1}$$
, avec $B = \begin{pmatrix} \lambda & \alpha \\ 0 & \mu \end{pmatrix}$, avec $|\lambda| = |\mu| = 1$

Posons $\lambda = \exp(2\pi i\alpha)$ et $\mu = \exp(2\pi i\beta)$.

On considère
$$\lambda_n = \exp(2\pi i \alpha_n)$$
 et $\mu_n = \exp(2\pi i \beta_n)$, avec $\alpha_n = \frac{\lfloor n\alpha \rfloor}{n}$ et $\beta_n = \frac{\lfloor n\beta \rfloor}{n}$.

On a $(\lambda_n)^n = 1$ et $\lim_{n \to +\infty} \lambda_\alpha n = \exp(i\alpha) = \lambda$. De même pour $(\mu_n)_{n \in \mathbb{N}}$.

On considère $B_n = \begin{pmatrix} \lambda_n & \alpha \\ 0 & \mu_n \end{pmatrix}$.

Pour λ_n et μ_n distincts, B_n est semblable à $\operatorname{Diag}(\lambda_n,\mu_n)$, donc $(B_n)^n=I_2$ et $B_n\in E$.

On a alors $\lim_{n\to +\infty}PB_nP^{-1}=PBP^{-1}=A,$ donc A adhérent à E.

Mais le problème est que λ_n et μ_n ne sont pas nécessairement distincts.

Pour $\alpha \neq \beta$, ils le sont pour n assez grand. Donc OK.

Pour $\alpha = \beta$, il suffit de prendre $\beta_n = \alpha_n + \frac{1}{n}$.

c) On admet ici que les racines λ et μ sont des fonctions continues des coefficients de A.

Donc F est fermé (stable par passage à la limite).

Or, $E \subset F$, donc $\overline{E} \subset \overline{F}$, c'est-à-dire $\overline{E} \subset F$. Mais par b), $F \subset \overline{E}$. Donc $F = \overline{E}$.

10) On a
$$A = \begin{pmatrix} a & c \\ b & -a \end{pmatrix}$$
.

Les matrices nilpotentes sur $\mathcal{M}_2(\mathbb{R})$ sont les matrices de la forme $\begin{pmatrix} \alpha & \gamma \\ \beta & -\alpha \end{pmatrix}$, avec $\alpha^2 + \beta \gamma = 0$, c'est-à-dire les matrices dont la trace et le déterminant sont nuls.

Premier cas: b non nul.

On considère donc
$$N_1=\left(\begin{array}{cc} a & \gamma \\ b & -a \end{array}\right)$$
, avec $\gamma=-a^2/b$ et $N_2=\left(\begin{array}{cc} a & b-\gamma \\ b & -a \end{array}\right)$.

Deuxième cas : c non nul : preuve analogue (il suffit d'inverser la base pour se ramener au cas précédent).

$$Troisi\`eme\ cas:\ b=c=0.\ \text{On consid\`ere}\ \left(\begin{array}{cc} a & 0 \\ 0 & -a \end{array}\right) = \frac{1}{2} \left(\left(\begin{array}{cc} a & -a \\ a & -a \end{array}\right) + \left(\begin{array}{cc} a & a \\ -a & -a \end{array}\right)\right).$$

11) $\varphi_A(P) = R \operatorname{ssi} A \operatorname{divise} XP - R \operatorname{et} \operatorname{deg} R < n.$

On peut vérifier que φ_A est linéaire (et à valeurs dans $\mathbb{R}_{n-1}[X]$).

On procède par analyse-synthèse.

Soit λ une valeur propre. Alors il existe P non nul tel que $\varphi_A(P) = \lambda P$, c'est-à-dire A divise $XP - \lambda P = (X - \lambda)P$.

Réciproquement, si $A = \alpha \prod_{k=1}^{n} (X - \lambda_k)$, alors $P_j = \prod_{k \neq j} (X - \lambda_k)$ est vecteur propre de φ_A , car $\varphi_A(XP_j) = \lambda_j P_j$.

Comme les λ_j sont distincts, on obtient bien une base de vecteurs propres de φ_A .

Autre méthode : On suppose A unitaire, et on pose $A = X^n + \sum_{k=0}^{n-1} a_k X^k$.

On a pour tout $k \in [0, n-2]$, $\varphi_A(X^k) = X^{k+1}$ et $\varphi_A(X^{n-1}) = X^n - A = -\sum_{k=0}^{n-1} a_k X^k$.

La matrice de φ_A dans la base canonique est la matrice compagnon :

$$\begin{pmatrix} 0 & & -a_0 \\ 1 & 0 & & -a_1 \\ & 1 & \ddots & \vdots \\ & & \ddots & 0 & -a_{n-2} \\ & & 1 & -a_{n-1} \end{pmatrix}$$

La polynôme caractéristique est donc $X^n + \sum_{k=0}^{n-1} a_k X^k$, c'est-à-dire A.

On en déduit que $\operatorname{Sp}(\varphi_A) = \operatorname{Sp}(A)$, et on peut noter que φ_A est donc diagonalisable.

12) a)
$$\frac{1}{d} \sum_{k=0}^{d-1} \frac{1}{\omega^{kr}} E(\omega^{kY}) = \frac{1}{d} \sum_{k=0}^{d-1} \sum_{j \in \mathbb{Z}} \omega^{k(j-r)} P(Y=j) = \frac{1}{d} \sum_{j \in \mathbb{Z}} \left(P(Y=j) \sum_{k=0}^{d-1} \omega^{k(j-r)} \right) e^{-ikt}$$

Or, $\sum_{k=0}^{d-1} \omega^{k(j-r)} = n$ si $j \equiv r$ [d], et 0 sinon. On obtient donc $\sum_{j \equiv r[d]} P(Y=j)$, c'est-à-dire $P(Y \equiv r$ [d]).

b) Pour
$$0 \le k < d$$
, $\lim_{n \to +\infty} E(\omega^{kY}) = \lim_{n \to +\infty} \left(\frac{1 + \omega^k + \dots + \omega^{k(d-1)}}{d}\right)^n = 1$ si $k = 0$ et 0 sinon.

Donc $\lim_{n\to+\infty} \sum_{k=0}^{d-1} E(\omega^{kY}) = 1$.

13) On vérifie par Taylor-Lagrange qu'il existe $M \in \mathbb{R}^+$ tel que $\forall t \in [0,1], |\operatorname{sh}(t) - t| \leq Mt^2$.

Donc
$$\left| u_n - \sum_{k=n}^{3n} \frac{1}{k} \right| \le K \sum_{k=n}^{3n} \frac{1}{k^2} = O\left(\frac{1}{n}\right).$$

Par comparaison avec une intégrale, on montre que $\sum_{k=n}^{3n} \frac{1}{k} \sim \int_{n}^{3n} \frac{dt}{t} = \ln 3$. Donc $\lim_{n \to +\infty} u_n = \ln 3$.

14) a) Convergence normale sur \mathbb{R} . Donc f est définie et continue sur \mathbb{R} .

b) On a $f'_n(x) = \frac{x}{n(1+n^2x^2)}$. La série $\sum f'_n$ converge normalement sur $[a, +\infty[$ et $]-\infty, -a]$, où a > 0.

Donc f est de classe C^1 sur \mathbb{R}^* .

D'autre part, pour
$$x > 0$$
, $\sum_{n=1}^{+\infty} \frac{x}{n(1+n^2x^2)} \sim \int_1^{+\infty} \frac{x \ dt}{t(1+t^2x^2)} \sim x \int_x^{+\infty} \frac{du}{u(1+u^2)} \sim -x \ln x$.

Donc $\lim_{n\to+\infty} f'(x) = 0$, et par le th du prolongement C^1 , f est de classe C^1 sur \mathbb{R} .

15) a) Théorème de la bijection appliquée à
$$f_n(x) = \sum_{k=1}^n \frac{x^k}{k}$$
.

b) On a
$$f_{n+1}(x_n) \ge f_n(x_n) = 1 = f_{n+1}(x_{n+1})$$
, donc $x_{n+1} \le x_n$. donc il existe $L = \lim_{n \to +\infty} x_n$.

On a
$$\lim_{n\to+\infty} f_n(x) = -\ln(1-x) = f(x)$$
. On a $f(\lambda) = 1$ pour $\lambda = 1 - e^{-1}$.

On a
$$1 = f(\lambda) \ge f_n(\lambda)$$
, donc $\lambda \le x_n$.

Pour $\varepsilon > 0$, on a $\lim_{n \to +\infty} f_n(\lambda + \varepsilon) = f(\lambda + \varepsilon) > 1$, donc $f_n(\lambda + \varepsilon) > 1$ pour n assez grand.

Donc $x_n \leq \lambda + \varepsilon$ pour n assez grand. On en déduit $\lim_{n \to +\infty} x_n = \lambda$.