Oraux blancs. Série 1.

- 1) Soit $P \in \mathbb{R}[X]$ non nul tel que $(X-1)^2$ divise P. Montrer que P admet au moins trois coefficients non nuls.
- 2) Soit $(X_n)_{n \in \mathbb{N}}$ une suite de v.a. indépendantes et de même loi de Bernoulli $\mathcal{B}(p)$, avec 0 .

Soit A un événement tel que 0 < P(A) < 1.

Montrer qu'il existe $n \in \mathbb{N}$ tel que $P(A \cap (X_n = 1)) \in]0, p[$.

- 3) On considère n couples (2n personnes). r personnes décèdent. Déterminer le nombre moyen N de couples restants.
- **4)** On considère $M = \begin{pmatrix} A & B \\ \hline O_{n-r,r} & O_{n-r} \end{pmatrix}$, avec $A \in \mathcal{M}_r(\mathbb{C})$ diagonalisable et $B \in \mathcal{M}_{r,n-r}(\mathbb{C})$.

On suppose A inversible. Montrer que M est diagonalisable.

- **5)** Soit un entier $n \in \mathbb{N}^*$. Déterminer les matrices $M \in \mathcal{M}_2(\mathbb{R})$ telles que $M^n = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- **6)** Soient A et $B \in \mathcal{M}_n(\mathbb{R})$ non nulles. On note $\theta : \mathcal{M}_n(\mathbb{R}) \to \mathcal{M}_n(\mathbb{R})$ $M \longmapsto M + \operatorname{tr}(AM)B$.

Cette application admet-elle des valeurs propres? Donner une CNS pour que θ soit diagonalisable.

- 7) Soit $Z_{n,x}$ une variable aléatoire de loi binomiale $\mathcal{B}(n,x)$, où $x \in [0,1]$. Soit P un polynôme réel.
- a) Montrer qu'il existe un polynôme Q_n tel que pour tout $x \in [0,1], Q_n(x) = E\left(P\left(\frac{Z_{n,x}}{n}\right)\right)$.
- b) Montrer que $\deg Q_n \leq \deg P$.
- c) Montrer que $(Q_n)_{n\in\mathbb{N}}$ converge uniformément sur [0,1].
- 8) On considère deux v.a. indépendantes A et B de même loi uniforme à valeurs dans $\mathcal{P}(\llbracket 1, n \rrbracket)$. Déterminer E(X), où $X = \operatorname{card}(A \cup B)$.
- 9) On pose $E = \{A \in \mathcal{M}_2(\mathbb{C}) \mid \exists n \in \mathbb{N}^*, A^n = I_2\} \text{ et } F = \{A \in \mathcal{M}_2(\mathbb{C}) \mid \forall \lambda \in \operatorname{Sp}(A), |\lambda| = 1\}.$
- a) Montrer que $E \subset F$.
- b) Montrer que pour tout $\alpha \in \mathbb{R}$, $\lim_{n \to +\infty} \frac{\lfloor n\alpha \rfloor}{n} = \alpha$. En déduire que F est inclus dans l'adhérence de E.
- c) Montrer que F est fermé. Conclure.
- 10) Soit $A \in \mathcal{M}_2(\mathbb{R})$ telle que tr A = 0.

Montrer qu'il existe N_1 et N_2 nilpotentes telles que $A = N_1 + N_2$.

- 11) Soit $A \in \mathbb{R}_n[X]$ scindé à racines simples de degré n. On considère φ_A l'endomorphisme de $\mathbb{R}_{n-1}[X]$ qui à un polynôme P associe le reste de la division euclidienne de XP par A. Déterminer le spectre de φ_A .
- 12) a) Soit Y une variable aléatoire à valeurs dans \mathbb{Z} , $0 \le r < d$ et $\omega = e^{2i\pi/d}$.

Montrer que $P(Y \equiv r \ [d]) = \frac{1}{d} \sum_{k=0}^{d-1} \frac{1}{\iota_{\iota, k} r} E(\omega^{kY}).$

b) Soit $(X_n)_{n\geq 1}$ une suite i.i.d. de variables aléatoires suivant la loi uniforme sur [1,d].

Pour $n \in \mathbb{N}^*$, on pose $S_n = X_1 + ... + X_n$. Déterminer la valeur de $\lim_{n \to +\infty} P(S_n \equiv r \ [d])$.

- **13)** Pour $n \in \mathbb{N}^*$, on pose $u_n = \operatorname{sh}\left(\frac{1}{n}\right) + \operatorname{sh}\left(\frac{1}{n+1}\right) + \operatorname{sh}\left(\frac{1}{n+2}\right) + \dots + \operatorname{sh}\left(\frac{1}{3n}\right)$. Déterminer $\lim_{n \to +\infty} u_n$.
- 14) a) On pose $f: x \longmapsto \sum_{n=1}^{+\infty} \frac{\arctan(nx)}{n^2}$. La fonction f est-elle continue sur son ens de définition D?
- b) L'application f est-elle de classe C^1 sur D? Déterminer la limite de f' en 0^+ .
- **15)** Pour $n \in \mathbb{N}^*$, on considère l'équation $(E_n): \sum_{k=1}^n \frac{x^k}{k} = 1$.
- a) Montrer que (E_n) possède une unique solution sur [0,1], qu'on note x_n .
- b) Montrer que $(x_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.