Oraux blancs. Série 0. Indications/Corrigé

Centrale PC-PSI

1) L'image d'ne matrice est l'ev engendré par les vecteurs colonnes. D'où :

On a
$$\operatorname{Im} M \subset \operatorname{Im} \left(\frac{A}{B} \right) + \operatorname{Im} \left(\frac{C}{D} \right)$$
, donc $\operatorname{rg} M \leq \operatorname{rg} \left(\frac{A}{B} \right) + \operatorname{rg} \left(\frac{C}{D} \right)$.
On a aussi $\operatorname{rg} \left(\frac{A}{B} \right) = \operatorname{rg} \left(\left(A^T \mid B^T \right) \right) \leq \operatorname{rg} A^T + \operatorname{rg} B^T = \operatorname{rg} A + \operatorname{rg} B$. De même pour $\operatorname{rg} \left(\frac{C}{D} \right)$.

Autre preuve : Pour deux matrices M_j , on a : $\operatorname{rg}(\sum_{j=1}^p M_j) \leq \sum_{j=1}^p \operatorname{rg}(M_j)$.

En effet, $\operatorname{Im}(\sum_{j=1}^p M_j) \subset \sum_{j=1}^p \operatorname{Im} M_j$, donc $\operatorname{rg}(\sum_{j=1}^p M_j) \leq \dim(\sum_{j=1}^p \operatorname{Im} M_j) \leq \sum_{j=1}^p \operatorname{rg}(M_j)$.

Ici, on a
$$M = \begin{pmatrix} A & O \\ \hline O & O \end{pmatrix} + \begin{pmatrix} O & C \\ \hline O & O \end{pmatrix} + \begin{pmatrix} O & O \\ \hline B & O \end{pmatrix} + \begin{pmatrix} O & O \\ \hline O & D \end{pmatrix}.$$

Et on conclut en utilisant $\operatorname{rg}\left(\begin{array}{c|c}A & O\\\hline O & O\end{array}\right) = \operatorname{rg}A.$

2) a) $X^3 + X^2 + X$ annule f, donc 0 est la seule valeur propre réelle éventuelle.

Si f était diagonalisable, alors f = 0 et X serait polynôme annulateur.

fest diagonalisable sur $\mathbb C$ et $\mathrm{Sp}(f)\subset\{0,j,j^2\}.$

On a dim $E_j = \dim E_{j^2} \le 1$, et rg $f = \dim E_j + \dim E_{j^2}$. Comme f non nulle, alors rg f = 2.

Autre preuve pour prouver $\operatorname{rg} f = 2$: on a $1 \leq \dim \operatorname{Ker} f \leq 2$ car $0 \in \operatorname{Sp}(f)$ et f non nulle.

Si on avait dim Ker f=2, alors le polynôme caractéristique de f serait de la forme $X^2(X-\lambda)$, et donc $\lambda=0$ car $\mathrm{Sp}(f)=\{0\}$ sur \mathbb{R} , donc f nilpotente de rang 1, donc $\mathrm{Im}\, f\subset \mathrm{Ker}\, f$ et $f^2=0$, ce qui contredit le fait que f n'admet pas de polynôme annulateur de degré <3.

b) On a $(f^2 + f + \operatorname{Id}) \circ f = 0$, donc $\operatorname{Im} f \subset \operatorname{Ker}(f^2 + f + \operatorname{Id})$.

Par a), dim Ker f=1 et donc dim Ker $(f^2+f+\mathrm{Id})\geq 2$.

Or, on a $\operatorname{Ker}(f) \oplus \operatorname{Ker}(f^2 + f + \operatorname{Id})$: si f(x) = 0, alors $(f^2 + f + \operatorname{Id})(x) = x$.

On en déduit $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Ker}(f^2 + f + \operatorname{Id})$.

- c) Soit $x \in \text{Ker}(f^2 + f + \text{Id})$ non nul. Sinon, $f(x) = \lambda x$, avec $\lambda^{\epsilon} 2 + \lambda + 1 = 0$: absurde.
- d) On conclut en prenant une base (y, x, f(x)) où $\mathbb{R}y$ base de Ker f.
- 3) a) X^k-1 est scindé à racines simples, donc M est diagonalisable sur \mathbb{C} , et $\mathrm{Sp}(M)\subset U_d$.

On note λ et μ les racines de χ_M . On a λ et $\mu \in U_d$, donc $|\operatorname{tr} M| = |\lambda + \mu| \le 2$.

b) On a det $M = \lambda \mu$, donc $|\det M| = 1$. Comme $M \in \mathcal{M}_2(\mathbb{Z})$, alors $\operatorname{tr} M$ et $\det M \in \mathbb{Z}$.

De plus, si $|\operatorname{tr} M| = 2$, alors $\lambda = \mu$, donc $M = \lambda I_2$, avec $\lambda \in \{-1, 1\}$, et d = 1 ou 2.

On suppose désormais $|\operatorname{tr} M| < 2$.

Si $\det M = -1$, alors λ et μ sont réels, donc $\{\lambda, \mu\} = \{-1, 1\}$, et $\alpha = 0, d = 2$.

Sinon, det M=1. On a alors $\chi_M(z)=z^2-\alpha z+1$, avec $\alpha=\operatorname{tr} M\in\{-1,0,1\}$.

On obtient alors $Sp(M) = \{i, -i\}, \{e^{2i\pi/3}, e^{-2i\pi/3}\}\$ ou $\{e^{i\pi/3}, e^{-i\pi/3}\},$ donc $d \in \{4, 3, 6\}.$

Les valeurs 4, 3, 6 sont atteintes respectivement par les matrices compagnons

$$\left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & -1 \\ 1 & -1 \end{array}\right) \text{ et } \left(\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right)$$

Donc l'ensemble des valeurs possibles de d est $\{1, 2, 3, 4, 6\}$.

4) Posons
$$P(X) = \sum_{k=0}^{n} a_k X^k$$
. On a $\left| P(e^{i\theta}) \right|^2 = P(e^{i\theta}) \overline{P(e^{i\theta})} = \sum_{k=0}^{n} \left| a_k \right|^2 + \sum_{j \neq k} a_k \overline{a_j} \exp(i(k-j))\theta$.

Donc
$$\int_0^{2\pi} |P(e^{i\theta})|^2 d\theta = 2\pi \sum_{k=0}^n |a_k|^2$$
.

On a
$$a_0 = 1$$
. On a aussi $\sum_{k=1}^{n} a_k = -1$, donc $n \sum_{k=1}^{n} |a_k|^2 \ge (\sum_{k=1}^{n} |a_k|)^2$, donc $\sum_{k=1}^{n} |a_k|^2 \ge \frac{1}{n}$.

Donc
$$\frac{1}{2\pi} \int_0^{2\pi} \left| P(e^{i\theta}) \right|^2 d\theta \ge 1 + \frac{1}{n}$$
, d'où on déduit (par l'absurde) que $\sup_{\theta \in [0,2\pi]} \left| P(e^{i\theta}) \right|^2 \ge 1 + \frac{1}{n}$.

5) On montre par récurrence que $0 \le u_n \le n + n_0$. On a donc $u_n = O(n)$.

D'où $u_{n+1} = O(\sqrt{n})$, c'est-à-dire $u_n = O(\sqrt{n})$.

D'où
$$\sqrt{n} \le u_{n+1} \le \sqrt{n + O(\sqrt{n})}$$
, d'où $u_n \sim \sqrt{n}$.

On a alors
$$\sqrt{n+\sqrt{n}+\mathfrak{o}(\sqrt{n})} \leq u_{n+1} \leq \sqrt{n+\sqrt{n}+\mathfrak{o}(\sqrt{n})}$$
, d'où on déduit $u_{n+1} = \sqrt{n} + \frac{1}{2} + \mathfrak{o}(1)$.

Comme
$$\sqrt{n-1} = \sqrt{n} + \mathfrak{o}(1)$$
, alors $\lim_{n \to +\infty} (u_n - \sqrt{n}) = \frac{1}{2}$

6) a) On a
$$\left| \int_0^1 t^n P(t) \ dt \right| \le M \int_0^1 t^n \ dt = \frac{M}{n+1}$$
, où $M = \sup_{t \in [0,1]} |P(t)|$.

- On vérifie d'abord que les termes existent, ce qui résulte de $\int_0^1 t^n P(t) \ dt = O\left(\frac{1}{n}\right)$.
- La plupart des propriétés des normes sont immédiatement vérifiées. On s'intéresse ici aux points délicats :
- Définie positivité : Si $\forall n \in \mathbb{N}, \int_0^1 t^n P(t) dt = 0$, alors $\int_0^1 P(t)^2 dt = 0$, donc P = 0.

Remarque : En effet, P est orthogonal aux t^n pour $\langle f,g\rangle=\int_0^1 f(t)g(t)\ dt$, donc à lui-même par linéarité.

- Inégalité triangulaire pour
$$M$$
: On sait que $\sqrt{\sum_{n=0}^{+\infty}(a_n+b_n)^2} \leq \sqrt{\sum_{n=0}^{+\infty}a_n^2} + \sqrt{\sum_{n=0}^{+\infty}b_n^2}$

pour toutes suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de carrés sommables : en effet, il s'agit de l'inégalité trianguliare pour la norme euclidienne associée au produit scalaire $\langle a,b\rangle=\sum_{n=0}^{+\infty}a_nb_n$.

b) On a
$$||X^n|| = 1$$
, $N(X^n) = \sup_{k \in \mathbb{N}} \frac{1}{n+k+1} = \frac{1}{n+1}$ et $M(X^n) = \sqrt{\sum_{k=0}^{+\infty} \left(\frac{1}{n+k+1}\right)^2}$.

Par comparaison avec une intégrale, on a $M(X^n) \sim \sqrt{\frac{1}{n}}$. Donc les normes sont 2 à 2 non équivalentes.

X-PSI

- 1) On considère $Y = \sum_{i=1}^n X_i v_i$, avec X_i v.a. de Rademacher indépendantes. On a $E(\|Y\|^2) = n$.
- 2) Première preuve : $\sum_{i < j < k} {n \choose k} {j \choose j} = 4^n$.

Seconde preuve : Pour tout $x \in E$, on associe 0, 1, 2, 3 selon l'appartenance de x à $A, B \setminus A, C \setminus B$ et $E \setminus C$.

3) Première méthode : On commence par considérer n couples au lieu de n paires :

il y a $\binom{2n}{n} \times n!$ couples $(x_i, y_i)_{1 \le i \le n}$ formant une partition, donc $N = \binom{2n}{n} \times n! \times \frac{1}{2^n} = \frac{(2n)!}{2^n n!}$

Seconde méthode : Le nombre de n-uplets de paires formant une partition est : $\binom{2n}{2}\binom{2n-2}{2}...\binom{2}{2}$.

Donc
$$N = {2n \choose 2} {2n-2 \choose 2} ... {2 \choose 2} \times \frac{1}{n!} = \frac{(2n)!}{2^n n!}$$

4) a) On construit une décomposition en choisissant n_1 et on est alors ramené à une décomposition de $n-n_1$. On a pour $n \ge 1$, $a_n = \sum_{k=1}^n a_{n-k}$, donc $\forall n \ge 2$, $a_n = 2a_{n-1}$.

Or,
$$a_0 = 1$$
 et $a_1 = 1$. Donc $a_n = 2^{n-1}$.

Preuve directe : On associe à la décomposition $n=n_1+...+n_r$ l'ensemble $\{n_1,n_1+n_2,...,n_1+n_2+...+n_{r-1}\}$.

On obtient ainsi une bijection de l'ensemble des décompositions sur l'ensemble des parties de [1, n-1].

b) On reprend la même méthode qu'au a).

On associe à la décomposition $n = n_1 + ... + n_r$ l'ensemble $\{n_1, n_1 + n_2, ..., n_1 + n_2 + ... + n_{r-1}\}$.

On obtient ainsi une bijection sur l'ensemble des parties de [1, n-1] de cardinal r-1.

Donc $b_n = \binom{n-1}{r-1}$.

5) a)
$$P(S_{2p} = 0) = \frac{1}{4^p} {2p \choose p} \sim \frac{\lambda}{\sqrt{p}}$$
. On a $N = \sum_{p=1}^{+\infty} 1_{S_{2p}=0}$.

On a
$$N \ge \sum_{k=1}^{p} P(S_{2k} = 0)$$
, donc $E(N) = +\infty$, car $\sum_{p=1}^{+\infty} \frac{\lambda}{\sqrt{p}} = +\infty$.

b) Posons $T = \min\{k \in \mathbb{N}^* \mid S_k = 0\} \in \mathbb{N}^* \cup \{+\infty\}.$

L'idée est qu'une fois le premier retour à l'origine effectué, on est ramené à chercher s'il y a à nouveau un retour.

On utilise donc:

On a
$$P(N \ge 2) = \sum_{j=1}^{+\infty} P(\exists k > j, S_k = 0, T = j) = \sum_{j=1}^{+\infty} P(\exists k > j, S_k = 0 \mid T = j) P(T = j).$$

Or,
$$P(\exists k > j, S_k = 0 \mid T = j) = P(\exists k > j, \sum_{i=j+1}^k X_i = 0 \mid T = j) = P(\exists k > j, \sum_{i=j+1}^k X_i = 0)$$
, car

 $T=f(X_1,...,X_j)$ indépendant de $(X_{j+1},...,X_k).$

Donc
$$P(\exists k > j, S_k = 0 \mid T = j) = P(\exists k > j, \sum_{i=j+1}^k X_i = 0) = P(\exists k > 0, \sum_{i=1}^k X_i = 0) = P(N \ge 1).$$

Donc
$$P(N \ge 2) = \sum_{i=1}^{+\infty} P(N \ge 1) P(T = j) = P(N \ge 1)^2$$
.

c)
$$P(N \ge k) = P(N \ge 1)^k$$
. Si on avait $P(N \ge 1) < 1$, alors $E(N) = \sum_{k=1}^{+\infty} P(N \ge k)$ convergerait.

Donc $P(N \ge 1) = 1$, donc $P(N \ge k) = 1$, et par continuité décroissante, $P(N = +\infty) = 1$.

6) On a
$$10^p \le 2^k < 2.10^p$$
 ssi $p\alpha \le k < 1 + p\alpha$, où $\alpha = \log 10 = \frac{\ln 10}{\ln 2} > 1$.

Il existe un unique entier k tel que $p\alpha \le k < 1 + p\alpha$).

Donc 2^k commence par un chiffre 1 ssi il existe un entier p tel que $k = \lceil p\alpha \rceil$.

Donc
$$P(A_n) = \frac{1}{n} \operatorname{card} \{ p \in \mathbb{N}^* \mid \lceil p\alpha \rceil \le n \}.$$

Comme
$$(1 + p\alpha \le n) \Rightarrow (\lceil p\alpha \rceil \le n) \Rightarrow (p\alpha \le n)$$
, alors $\frac{1}{n} \left| \frac{n-1}{\alpha} \right| \le P(A_n) \le \frac{1}{n} \left\lfloor \frac{n}{\alpha} \right\rfloor$.

D'où par pincement $\lim_{n\to+\infty} P(A_n) = \frac{1}{\alpha}$.

7) a) $|f(t)| \exp(itx)| \le |f(t)|$, donc F est bien définie, et $|F(x)| \le \int_{\mathbb{R}} |f(t)| dt$.

b) On a
$$\forall x > 0$$
, $F(t) = \int_a^b f(t) \exp(itx) dt = \left[\frac{f(t)}{ix} \exp(itx) \right]_a^b - \int_a^b \frac{f'(t)}{ix} \exp(itx) dt$.

Donc
$$|F(x)| \le \frac{K}{x}$$
, où $K = |f(a)| + |f(b)| + \int_a^b |f'(t)| dt$.

c) L'idée est d'écrire
$$F(x) = \int_{-\infty}^{-r} f(t) \exp(itx) dt + \int_{-r}^{r} f(t) \exp(itx) dt + \int_{r}^{+\infty} f(t) \exp(itx) dt$$
.

Pour r fixé, par la même preuve qu'au b), on a $\lim_{x\to+\infty}\int_{-r}^r f(t) \exp(itx) dt = 0$.

Or,
$$\left| \int_{-\infty}^{-r} f(t) \exp(itx) \ dt + \int_{r}^{+\infty} f(t) \exp(itx) \ dt \right| \le \int_{-\infty}^{-r} |f(t)| \ dt + \int_{r}^{+\infty} |f(t)| \ dt.$$

Comme
$$f$$
 est intégrable, il existe $r > 0$ tel que $\int_{-\infty}^{-r} |f(t)| \ dt + \int_{r}^{+\infty} |f(t)| \ dt \le \varepsilon$.

Remarque: Il est essentiel ici d'obtenir un r indépendant de x de sorte que :

$$\forall x, \left| \int_{-\infty}^{-r} f(t) \exp(itx) \ dt + \int_{r}^{+\infty} f(t) \exp(itx) \ dt \right| \le \varepsilon.$$

Or, par b), pour x assez grand, $\left| \int_{-r}^{r} f(t) \exp(itx) dt \right| \le \varepsilon$. Donc $|F(x)| \le 2\varepsilon$ pour x assez grand.

8) a) Supposons
$$\sum_{(i_1,...,i_d)\in E_{n,d}} \alpha_{(i_1,...,i_d)} x_1^{i_1}...x_d^{i_d} = 0.$$

En considérant comme un polynôme en x_d , on a $\forall m \leq n, \sum_{(i_1,\dots,i_d) \in E_{m,d-1}} \alpha_{(i_1,\dots,i_d)} x_1^{i_1} \dots x_{d-1}^{i_{d-1}} = 0$.

Par récurrence, on obtient $\alpha_{(i_1,...,i_d)}=0$ pour tout $(i_1,...,i_d)$. Donc $V_{n,d}$ forme une famille libre.

Autre preuve (plus simple) pour prouver l'indépendance linéaire :

En appliquant
$$\frac{\partial^n}{\partial x_1^{j_1}...\partial x_d^{j_d}}$$
 à $\sum_{(i_1,...,i_d)\in E_{n,d}} \alpha_{(i_1,...,i_d)} x_1^{i_1}...x_d^{i_d}$, on obtient $\alpha_{(j_1,...j_d)}i_1!...i_d!$, d'où $\alpha_{(j_1,...j_d)}=0$.

On a card $V_{n,d} = \binom{n+d-1}{d-1}$. Une preuve consiste à considérer $(i_1, ..., i_d) \longmapsto (i_1+1, i_1+i_2+2, ..., i_1+...+i_{d-1}+d-1)$ qui réalise une bijection de $V_{n,d}$ sur l'ensemble des (d-1)-parties de [1, n+d-1].

b) Montrons que $\Delta(V_{n,d})=V_{n-2,d}$. On vérifie aisément que $\Delta(V_{n,d})\subset V_{n-2,d}$

On montre par récurrence (pour l'ordre lexicographique) que $\forall (j_1,...,j_d) \in E_{n-2,d}, \ x_1^{j_1}...x_d^{j_d} \in \Delta(V_{n,d}).$

On a
$$\Delta(x_1^{i_1}...x_d^{i_d}) = \sum_{i=1}^d i_i(i_i-1)x_1^{i_1}...x_i^{i_j-2}...x_d^{i_d}$$
.

Supposons que les $(j_1,...,j_d) \in E_{n-2,d}$ tels que $(j_1,...,j_d) < (i_1,...,i_d-1), x_1^{j_1}...x_d^{i_d} \in \Delta(V_{n,d})$.

Alors, si $i_d \geq 2$, on obtient par hyp de rec forte que $x_1^{i_1}...x_d^{i_d-2} \in E_{n-2,d}$.

On conclut ensuite en utilisant aussi une récurrence sur d (on peut supposer que $\Delta(V_{n,d-1}) = V_{n-2,d-1}$).

Oraux X-MP

1) a) Montrons qu'il suffit de modifier un coefficient pour obtenir une matrice inversible.

Il existe i tel que le cofacteur C_{i1} soit non nul (puisque det $M = \sum_{i=1}^{n} a_{i1}C_{i1}$ est non nul).

On considère $f: t \longmapsto \det(M + tE_{ij}) = \det(M_j + t E_i, M_1, M_2, ..., M_n) = \det M + t C_{i1}$.

Il existe donc t tel que f(t) = 0, c'est-à-dire $M' = M + tE_{ij}$ inversible.

Donc en modifiant le seul coefficient d'indice (i, 1), on obtient une matrice M' inversible.

b) Posons $r = \operatorname{rg} M < n$. Montrons que le nombre minimum de coefficients à modifier vaut n - r.

On a $\operatorname{rg}(M+N) \leq \operatorname{rg} M + \operatorname{rg} N$, donc si M+N inversible, alors $\operatorname{rg} N \geq n-r$

Or, en changeant p coefficients à M, on ajoute à M une matrice N de rang $\leq p$. Donc $p \geq n - r$.

Réciproquement, par le théorème de la base incomplète, il existe $(M_j)_{j\in J}$ une base de Im J de cardinal r et une famille $(E_j)_{j\in I}$ de cardinal n-r telle que $(M_j)_{j\in J}\cup (E_i)_{i\in I}$ base de K^n .

Quitte à réordonner, supposons $\operatorname{Im} M = \operatorname{Vect}(M_1,...,M_r)$ et $I = \{i_{r+1},...,i_n\}$.

On considère alors $M' = (M_1, ..., M_r, M_{r+1} + E_{i_{r+1}}, ..., M_n + E_{i_n}).$

Les colonnes $M_{r+1},\,\dots\,,\,M_n$ sont combinaisons linéaires de $M_1,\dots,M_r.$

D'où $\operatorname{Vect}(M') = \operatorname{Vect}(M'_1, ..., M'_n) = \operatorname{Vect}(M_1, ..., M_r) + \operatorname{Vect}(E_{i_{r+1}}, ..., E_{i_n}) = K^n$, donc M' inversible.

2) On a $u_n = \int_0^{+\infty} \frac{\sin(x)}{x^{1-1/n}} dx$, en utilisant sur $]0, +\infty[$ le changement de variable $t = x^{1/n}$, avec $dt = \frac{1}{n}x^{1/n-1}$. Par IPP, on obtient $u_n = \left(1 - \frac{1}{n}\right) \int_0^{+\infty} \frac{1 - \cos(x)}{x^{2-1/n}} dx$.

On applique le th de convergence dominée à la suite $(\int_0^{+\infty} f_n \ dx)_{n\geq 2}$, où $f_n(x) = \frac{1-\cos(x)}{r^{2-1/n}}$.

On a en particulier domination :

$$\forall n \geq 2, \ \forall x \in]0, +\infty[, \ |f_n(x)| \leq \varphi(x) = \begin{cases} \frac{1 - \cos x}{x^2} \text{ si } x \in]0, 1] \\ \frac{2}{x^{3/2}} \text{ si } x \geq 1 \end{cases}, \text{ et } \varphi \text{ intégrable sur }]0, +\infty[.$$

Par convergence dominée, $\lim_{n\to+\infty} u_n = \int_0^{+\infty} \frac{1-\cos(x)}{x^2} dx = \int_0^{+\infty} \frac{\sin(x)}{x} dx$, qui vaut $\frac{\pi}{2}$.

3) Il y a au moins n entiers $k \in [n, 3n]$ tels que $f(k) \ge n$.

On a alors $\sum_{k=n}^{3n} \frac{f(k)}{k^2} \ge \frac{n^2}{(3n)^2} = \frac{1}{9}$. Donc $\sum_{n=1}^{+\infty} \frac{f(n)}{n^2} = +\infty$ (sinon, on aurait $\lim_{n \to +\infty} \sum_{k=n}^{3n} \frac{f(k)}{k^2} = 0$).

4) a) Si $P(X) \in E$, alors $P(-X) \in E$, donc $a \in A \Rightarrow (-a) \in A$.

Si $P(X) \in E$, alors $P(\frac{1}{X})X^n \in E$, donc $a \in A \setminus \{0\} \Rightarrow \frac{1}{a} \in A$. Et $0 \in A$, car $X \in E$.

b) Supposons a racine de $P(X) = \sum_{k=0}^{n} u_k X^k$, avec $u_n \in \{-1, 1\}$.

On a $|a|^n \le \sum_{k=0}^{n-1} |a|^k$, donc $|a| \le 2$, car $2^n > \sum_{k=0}^{n-1} 2^k$.

c) Par a) et b), $A \subset]-2, -\frac{1}{2}[\cup\{0\}\cup]\frac{1}{2}, 2[...]$

5) a) On a $K_n(x) = \sum_{k=0}^n b_k$, où $b_k = \frac{1}{22k} {2k \choose k}$.

Donc $|K_n(e^{i\theta})|^2 = \sum_{k=0}^n |b_k|^2 + 2\sum_{0 \le j < k \le n} \text{Re}(\overline{b_j}b_k e^{i(k-j)\theta})$. Donc $\frac{1}{2\pi} \int_0^{2\pi} |K_n(e^{i\theta})|^2 d\theta = \sum_{k=0}^n |b_k|^2 = g_n$.

b) Posons $A_n = \sum_{k=0}^n a_k$. Ainsi $(A_n)_{n \in \mathbb{N}}$ est le rpoduti de Cauchy de $(a_n)_{n \in \mathbb{N}}$ et de $(1)_{n \in \mathbb{N}}$.

On a donc pour tout |z| < 1, $F(z) = \frac{f(z)}{1-z} = \sum_{n=0}^{+\infty} A_n z^n$.

Mais on a aussi $K_n(z)^2 = \frac{1}{1-z} + \mathfrak{o}(z^n)$, donc $F_n(z) = K_n(z)^2 f(z) = \sum_{k=0}^n A_k z^k + \mathfrak{o}(z^k)$.

Ainsi, $F_n(z)$ et F(z) sont deux séries entières ayant les mêmes coefficients d'indices $\leq n$.

Donc $A_n = \frac{1}{2\pi r^n} \int_0^{2\pi} F_n(re^{i\theta}) e^{-in\theta} d\theta$ pour tout 0 < r < 1, donc $|A_n| \le \frac{1}{2\pi r^n} \int_0^{2\pi} \left| K_n(re^{i\theta}) \right|^2 d\theta$.

En faisant tendre r vers 1^- , on obtient bien $|A_n| \leq \frac{1}{2\pi} \int_0^{2\pi} |K_n(e^{i\theta})|^2 d\theta = g_n$.

6) a) Par Taylor-Lagrange, $|f(t+1) - f(t) - f'(t)| \le \frac{1}{2} \sup |f''|$, donc $|f'(t)| \le 2 \sup |f| + \frac{1}{2} \sup |f''|$.

b) On a $\int_a^b f'(t)^2 \ dt = [f(t)f'(t)]_a^b - \int_a^b f(t)f''(t) \ dt.$ On a $\left| \int_a^b f(t)f''(t) \ dt \right| \leq \sqrt{\left(\int_{\mathbb{R}} f(t)^2 \ dt \right) \left(\int_{\mathbb{R}} f''(t)^2 \ dt \right)}.$

Pour conclure, il suffit de prouver qu'il existe deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que $\lim_{n\to+\infty}a_n=+\infty$, $\lim_{n\to+\infty}b_n=-\infty$ et $\lim_{n\to+\infty}[f(t)f'(t)]_{b_n}^{a_n}=0$.

On a $f(t)f'(t) = \frac{1}{2}(f(t)^2)'$. Il suffit donc de prouver la propriété suivante :

Si g est intégrable et C^1 , il existe une suite $(a_n)_{n\in\mathbb{N}}$ telle que $\lim_{n\to+\infty}a_n=+\infty$ et $\lim_{n\to+\infty}g'(a_n)=0$.

Sinon, il existerait $\varepsilon > 0$ tel que $|g'(t)| \ge \varepsilon$ pour t assez grand. Donc (via le TVI), on aurait $\lim_{t \to \infty} g = +\infty$, ce qui contredit g intégrable.

Remarque: On n'a pas nécessairement $\lim_{\infty} ff' = 0$.