Oraux blancs. Série 0

Centrale PC-PSI 2024

- 1) Soient $A, B, C, D \in \mathcal{M}_n(\mathbb{C})$. Montrer que $\operatorname{rg}\left(\begin{array}{c|c}A & C\\\hline B & D\end{array}\right) \leq \operatorname{rg}(A) + \operatorname{rg}(B) + \operatorname{rg}(C) + \operatorname{rg}(D)$.
- 2) Soit $f \in \mathcal{L}(\mathbb{R}^3)$ tel que $f^3 + f^2 + f = 0$. On suppose qu'il n'existe pas de polynôme annulateur non nul de f de degré inférieur ou égal à 2.
- a) L'endomorphisme f est-il diagonalisable ? Montrer que rg f=2.
- b) Montrer que $\operatorname{Im} f \subset \operatorname{Ker}(f^2 + f + \operatorname{Id})$. En déduire $\mathbb{R}^3 = \operatorname{Ker}(f) \oplus \operatorname{Ker}(f^2 + f + \operatorname{Id})$.
- c) Soit $x \in \text{Ker}(f^2 + f + \text{Id})$ non nul. Montrer que (x, f(x)) est libre.
- d) Construire une base \mathcal{B} de \mathbb{R}^3 telle que $\operatorname{Mat}_{\mathcal{B}} f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1 \end{pmatrix}$.
- 3) Soit $M \in \mathcal{M}_2(\mathbb{Z})$ une matrice à coefficients dans \mathbb{Z} On suppose qu'il existe $k \in \mathbb{N}^*$ tel que $M^k = I_2$. On note $d = \min\{k \in \mathbb{N}^* \mid M^k = I_2\}$.
- a) Montrer que M est diagonalisable sur \mathbb{C} et que $|\operatorname{tr} M| \leq 2$.
- b) Donner les valeurs possibles de d.
- 4) Soit P un polynôme de degré $n \ge 1$, tel que P(0) = 1 et P(1) = 0. Montrer que $\sup_{|z|=1} |P(z)| \ge \sqrt{1 + \frac{1}{n}}$. Indication: Considérer $\int_0^{2\pi} |P(e^{i\theta})|^2 d\theta$.
- **5)** On considère $(u_n)_{n\in\mathbb{N}}$ définie par $u_0 \geq 0$ et $u_{n+1} = \sqrt{u_n + n}$. Montrer que $u_n \sim \sqrt{n}$ et que $\lim_{n\to+\infty} (u_n \sqrt{n}) = \frac{1}{2}$.
- **6)** On pose sur $\mathbb{R}[X]$, $||P|| = \sup_{t \in [0,1]} |P(t)|$, $N(P) = \sup_{n \in \mathbb{N}} \left| \int_0^1 t^n P(t) \ dt \right|$ et $M(P) = \sqrt{\sum_{n=0}^{+\infty} \left(\int_0^1 t^n P(t) \ dt \right)^2}$.
- a) Montrer qu'il s'agit bien de normes sur $\mathbb{R}[X]$.
- b) Ces normes sont-elles équivalentes?

Oraux X-PSI 2024

1) Soient $v_1, ..., v_n$ des vecteurs unitaires d'un espace euclidien.

Montrer qu'il existe $(\varepsilon_1, ..., \varepsilon_n) \in \{-1, 1\}^n$ tel que $\|\sum_{i=1}^n \varepsilon_i v_i\| \leq \sqrt{n}$.

2) Soit E un ensemble fini de cardinal n.

Déterminer le nombre de triplets (A, B, C) de parties de E tels que $A \subset B \subset C$.

- 3) Déterminer le nombre N de façons d'apparier les entiers de 1 à 2n en un ensemble de n paires.
- 4) Soit $n \in \mathbb{N}^*$.
- a) Déterminer le nombre a_n de décompositions $n=n_1+...+n_r,$ où $r\geq 1$ arbitraire et $n_1,...,n_r\in\mathbb{N}^*.$
- b) On fixe $r \geq 1$. Déterminer le nombre b_n de décompositions $n = n_1 + ... + n_r$, où $n_1, ..., n_r \in \mathbb{N}^*$.
- 5) Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires i.i.d. de loi uniforme sur $\{-1,1\}$.
- On note $S_n = \sum_{k=1}^n X_k$, et on note $N(\omega) = \operatorname{card}\{n \in \mathbb{N}^* \mid S_n(\omega) = 0\} \in \mathbb{N} \cup \{+\infty\}$.

- a) Montrer que $E(N) = +\infty$.
- b) Exprimer $P(N \ge 2)$ en fonction de $P(N \ge 1)$.

 $Suggestion: \text{Consid\'erer } P(\exists\, k>j,\, S_k=0\mid T=j),\, \text{o\`u}\,\, T=\min\{k\in\mathbb{N}^*\mid S_k=0\}\in\mathbb{N}^*\cup\{+\infty\}.$

- c) Montrer que $P(N = +\infty) = 1$.
- **6)** Soit X_n de loi uniforme sur [1, n]. On note A_n l'événement : 2^{X_n} admet 1 pour premier chiffre.

Déterminer $\lim_{n\to+\infty} P(A_n)$.

- 7) Soit $f: \mathbb{R} \to \mathbb{R}$ intégrable et de classe C^1 . On pose $\forall x \in \mathbb{R}, F(x) = \int_{\mathbb{R}} f(t) \exp(itx) dt$.
- a) Montrer que F est définie.
- b) On suppose f nulle en dehors d'un segment [a, b]. Montrer que F tend vers 0 en $+\infty$.
- c) Dans le cas général, montrer que F tend vers 0 en $+\infty$.
- 8) On pose $E_{n,d} = \{(i_1, ..., i_d) \in \mathbb{N}^d \mid i_1 + ... + i_d = n\}.$

On pose $V_{n,d}$ l'ensemble des fonctions $f: \mathbb{R}^d \to \mathbb{R}$ définies par $f(x_1, ..., x_d) = x_1^{i_1} ... x_d^{i_d}$, où $(i_1, ..., i_d) \in E_{n,d}$.

- a) Montrer que $V_{n,d}$ forme une famille libre et montrer que card $V_{n,d} = \binom{n+d-1}{d-1}$.
- b) Pour $f \in \text{Vect}(V_{n,d})$, on note $\Delta(f) = \frac{\partial^2 f}{\partial x_1^2} + \dots + \frac{\partial^2 f}{\partial x_d^2}$. Déterminer $\text{Ker } \Delta$.

Oraux X-MP 2024

- 1) Soit $M \in \mathcal{M}_n(\mathbb{R})$.
- a) Soit M inversible.

Combien de coefficients de M faut-il modifier au minimum pour rendre la matrice non inversible?

b) Soit M non inversible, de rang r < n.

Combien de coefficients de M faut-il modifier au minimum pour rendre la matrice inversible?

- 2) Déterminer $\lim_{n\to+\infty} u_n$, où $u_n = n \int_0^{+\infty} \sin(t^n) dt$.
- 3) Soit $f: \mathbb{N}^* \to \mathbb{N}^*$ injective. Déterminer la nature (convergente ou divergente) de $\sum_{n\geq 1} \frac{f(n)}{n^2}$.
- 4) On note E l'ensemble des polynômes non nuls à coefficients dans $\{-1,0,1\}$ et A l'ensemble des racines des polynômes de E.
- a) Soit $a \in A$. Montrer que $-a \in A$ et que si a n'est pas nul, on a $a^{-1} \in A$.
- b) Montrer que pour tout $a \in A$, on a |a| < 2.
- c) (extrait) Montrer que $A \subset \left[-2, -\frac{1}{2}\right] \cup \{0\} \cup \left[\frac{1}{2}, 2\right]$.
- **5)** Soit $n \ge 2$. On pose $g_n = \sum_{k=0}^n \frac{1}{2^{4k}} {2k \choose k}^2$. Soit $K_n \in \mathbb{R}_n[X]$ tel que $\frac{1}{\sqrt{1-x}} = K_n(x) + \mathfrak{o}(x^n)$.
- a) Montrer que $\frac{1}{2\pi} \int_0^{2\pi} |K_n(e^{i\theta})|^2 d\theta = g_n$.
- b) Soit $\sum a_n z^n$ une série entière de rayon $R \ge 1$. et de somme f(z).

On suppose que pour tout |z| < 1, on a $|f(z)| \le 1$. Montrer que $\forall n \in \mathbb{N}, |\sum_{k=0}^{n} a_k| \le g_n$.

- **6)** a) Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 telles que f et f'' sont bornées. Montrer que f' est bornée.
- b) Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 telles que f et f'' sont de carrés sommables.

Montrer que f' est de carré sommable.