Analyse. Complément. Corrigé

1) a) On a $\frac{(\sin t)^3}{t^2} = (\sin t) \frac{\sin t}{t} \frac{\sin t}{t}$ est DSE comme produit (de Cauchy) de fonctions DSE.

Donc f est DSE est DSE comme primitive d'une fonction DSE.

b) $g(x) = \exp(\lambda x) \exp(\lambda x^2) ... \exp(\lambda x^n) \exp(-n\lambda)$ est DSE comme produit (de Cauchy) de fonctions DSE.

Remarque : g est la série génératrice de la v.a. entière $Y = \sum_{k=1}^{n} kX_k$, où les X_k sont des v.a. de lois géométriques de paramètre λ : on a $G_X(x) = \exp(\lambda x - \lambda)$, et $G_{kX}(x) = \exp(\lambda x^k - \lambda)$.

c) Première méthode : $h(x) = \sum_{n=0}^{+\infty} f_n(x)$, où $f_n(x) = \frac{1}{n!} \left(\frac{1}{1-x}\right)^n$ est DSE par produit de Cauchy.

On pose $f_n(x) = \sum_{k=0}^{+\infty} c_{n,k} x^k$. Pour |x| < 1, $\sum_{n=0}^{+\infty} \sum_{k=0}^{+\infty} |c_{n,k}| |x|^k$ converge (vers $\exp\left(\frac{1}{1-|x|}\right)$).

La famille $(c_{n,k}x^k)_{(n,k)\in\mathbb{N}^2}$ est sommable. Donc on peut regrouper les termes selon la valeur de k.

Seconde méthode: h(x) vérifie h(0) = 1 et l'équation différentielle $(1-x)^2 h'(x) = h(x)$.

On cherche alors la solution de l'équation différentielle (qui est unique) sous la forme $\sum c_n x^n$.

On obtient $(n+1)c_{n+1} - (2n+1)c_n + (n-1)c_{n-1} = 0$ et $c_0 = 1$. D'où $|c_{n+1}| \le 2|c_n| + |c_{n-1}|$.

Donc $|c_n| \le u_n$, où $u_0 = c_0$, $u_1 = c_1$ et $u_{n+1} = 2u_n + u_{n-1}$. On a $u_n = \alpha \lambda^n + \beta \mu^n$.

Donc $c_n = O(\rho^n)$, où $\rho = \max(|\lambda|, |\mu|)$. Donc le rayon R de $\sum c_n x^n$ vérifie $R \ge \rho^{-1}$, donc R > 0.

2) a) E se partionne en les points fixes de f et les paires de la forme $\{x, f(x)\}$, avec $f(x) \neq x$.

On choisit le nombre de paires $k \leq \lfloor \frac{n}{2} \rfloor$, puis les paires (et ensuite, les autres points sont fixes).

Donc
$$I_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \binom{2k}{2} \binom{2k-2}{2} ... \binom{2}{2} \frac{1}{k!} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(n)!}{(n-2k)!(2k)!} \frac{(2k)(2k-1)}{2} ... \frac{2 \times 1}{2} = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(n)!}{(n-2k)!2^k}.$$

Remarque: Il faut diviser par k! car on choisit l'ensemble des k paires (et non les k-uplets de paires).

- b) Une involution est une permuation (car $f^{-1} = f$). On a donc $I_n \le n!$. D'où $R \ge 1$.
- c) Pour construire une involution de E_{n+1} , il y a deux cas :
- si f(n+1) = n+1, on se ramène à construire une involution de E_n . Il y a I_n choix.
- si $f(n+1) = m \le n$, on a f(m) = n+1, et on se ramène à construire une involution de $E_n \setminus \{m\}$.

Il y a n choix pour m, et m étant fixé, il y a I_{n-1} choix. Donc au total nI_{n-1} .

Donc $I_{n+1} = I_n + nI_{n-1}$. d'où $(n+1)c_{n+1} = c_n + c_{n-1}$. On a $I_0 = 1$, donc $c_0 = 1$

D'où pour
$$|x| < R$$
, $f'(x) = \sum_{n=0}^{+\infty} (n+1)c_{n+1}x^n = c_0 + \sum_{n=1}^{+\infty} (c_n + c_{n-1})x^n = f(x) + xf(x)$.

On en conclut
$$f(x) = f(0) \exp\left(x + \frac{x^2}{2}\right) = \exp\left(x + \frac{x^2}{2}\right) = \exp\left(x\right) \exp\left(x + \frac{x^2}{2}\right)$$
.

Par produit de Cauchy de deux séries entières de rayon $+\infty$, on obtient $R=+\infty$.

3) a) On a $|e^{i\theta X}| \leq 1$. Par le th du transfert, $G(e^{i\theta}) = \sum_{k=+\infty}^{+\infty} a_k e^{ik\theta}$, où $a_k = P(X = k)$.

Par cy normale sur le segment $[0,2\pi]$, on a $\int_0^{2\pi} G(e^{i\theta}) \ e^{-in\theta} \ d\theta = \sum_{k=+\infty}^{+\infty} a_k \ \int_0^{2\pi} e^{i(k-n)\theta} \ d\theta = 2\pi a_n$.

b)
$$P(X = n) = \frac{1}{2\pi} \int_0^{2\pi} G(e^{i\theta}) e^{-in\theta} d\theta \le \frac{1}{2\pi} \int_0^{2\pi} \left| G(e^{i\theta}) \right| d\theta = \frac{1}{2\pi} \int_0^{2\pi} G(e^{i\theta}) d\theta = P(X = 0).$$

- c) On a $G(e^{i\theta}) = E(e^{i\theta X}) = \prod_{k=1}^{N} E(e^{i\theta Z_k})$ par indépendance.
- Or, $E(e^{i\theta Z_k}) = 1 2p + 2p\cos(a_k\theta) \ge 0$, car $1 2p \ge 2p \ge |2p\cos(a_k\theta)|$. Donc $G(e^{i\theta}) \ge 0$.
- **4)** a) Comme $\forall u > 0$, $\frac{u}{e^u 1} = \sum_{n=1}^{+\infty} u e^{-nu}$ et $\int_0^{+\infty} u e^{-nu} = \frac{1}{n^2}$, alors par ITT, $I = \sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- b) Avec $t = 1 + \frac{u}{n}$, on a $J_n = \frac{1}{n^2} K_n$, où $K_n = \int_0^{+\infty} \frac{u}{(1 + u/n)^n 1} \ du$.

On a par cv dominée $\lim_{n\to+\infty} K_n = \int_0^{+\infty} \frac{u}{e^u - 1} du$, mais il faut trouver une fonction de domination !!!

On peut utiliser par le binôme $\left(1+\frac{u}{n}\right)^3 \ge 1+\binom{n}{3}\frac{u^3}{n^3} \ge 1+\frac{u^3}{12}$ pour n assez grand.

Et $\varphi(u) = \frac{u}{1 + u^3/12}$ est intégrable sur $[0, +\infty[$.

5) a) On a $f_{n+1}(x_n) \le f_n(x_n) = 0 = f_{n+1}(x_{n+1})$, donc $x_n \le x_{n+1}$. Ainsi, $(f_n)_{n \in \mathbb{N}}$ est croissante.

b) On a $f(L) = f(L) - f(x_n) + f(x_n) = f(L) - f(x_n) + f(x_n) - f_n(x_n)$.

Donc $|f(L)| \le |f(L) - f(x_n)| + |f(x_n) - f_n(x_n)| \le |f(L) - f(x_n)| + \sup |f - f_n|$.

Comme f est limite uniforme de $(f_n)_{n\in\mathbb{N}}$, alors f est continue, donc $\lim_{n\to+\infty} f(x_n) = f(L)$.

Donc par passage à la limite, f(L) = 0.

6) $\sum_{n\geq 1} \frac{1}{f(n)}$ est de même nature que $\int_1^{+\infty} \frac{1}{f(t)} dt$, car $\frac{1}{f}$ est décroissante positive.

Or, avec $t = f^{-1}(u)$, on a $\int_1^x \frac{1}{f(t)} dt = \left[\frac{t}{f(t)}\right]_1^x + \int_1^x \frac{tf'(t)}{f(t)^2} dt$. On a $\lim_{x \to +\infty} \frac{x}{f(x)} = 0$.

Donc $\int_1^{+\infty} \frac{1}{f(t)} dt$ converge ssi $\int_1^{+\infty} \frac{tf'(t)}{f(t)^2} dt$ converge.

Or, avec u = f(t), on a f'(t) dt = du, donc on obtient $\int_{1}^{+\infty} \frac{tf'(t)}{f(t)^2} dt = \int_{f(1)}^{+\infty} \frac{f^{-1}(u)}{u^2} du$.

(par un changement de variable, on a l'égalité des intégrales impropres, convergentes ou non).

Donc $\int_1^{+\infty} \frac{1}{f(t)} dt$ converge ssi $u \longmapsto \frac{f^{-1}(u)}{u^2} du$ est intégrable en $+\infty$.

7) $\Gamma(1+h) = \int_0^{+\infty} e^{-t} \exp(h \ln t) dt = \int_0^{+\infty} \sum_{n=0}^{+\infty} \frac{h^n}{n!} (\ln t)^n e^{-t} dt$.

Posons $\forall n \in \mathbb{N}, c_n = \int_0^{+\infty} (\ln t)^n e^{-t} dt$. Pour appliquer ITT, on va majorer $\int_0^{+\infty} |(\ln t)^n| e^{-t} dt$.

Or, $\int_0^{+\infty} |(\ln t)^n| e^{-t} dt \le \int_0^1 (-\ln t)^n dt + \int_1^{+\infty} t^n e^{-t} dt \le n! + \Gamma(n+1) = 2 n!$

On en déduit que pour |h| < 1, la série $\sum \int_0^{+\infty} \frac{h^n}{n!} |(\ln t)^n| e^{-t} dt$ converge.

Donc par ITT, $\Gamma(1+h) = \sum_{n=0}^{+\infty} \frac{h^n}{n!} c_n$ pour tout |h| < 1. D'où le résultat.

8) a) Il existe $(c_n)_{n\in\mathbb{N}}$ telle que $\forall x\in]-1,1[, f(x)=\sum_{n=0}^{+\infty}c_nx^n.$

Pour |x| < 1, on a |tx| < 1 pour tout $t \in [0,1]$, donc $T(f)(x) = \sum_{n=0}^{+\infty} \frac{c_n}{n+1} x^n$.

Ainsi, T(f) est bien définie par une série entière, et la linéarité de T est immédiate.

b) Par identication des séries entières, on a $T(f) = \lambda f$ ssi $\forall n \in \mathbb{N}, \frac{c_n}{n+1} = \lambda c_n$.

On en déduit qu'il existe au plus un $p \in \mathbb{N}$ tel que $c_p \neq 0$, et dans ce cas, $\lambda = \frac{1}{p+1}$.

Donc les valeurs propres sont les $\lambda_p = \frac{1}{p+1}$, où $p \in \mathbb{N}$, et le sev propre est $E_{\lambda_p} = \mathbb{R}x^p$.

9) a) Pour $n \ge p$ assez grand, $u_n > 0$, car $\lim_{n \to +\infty} u_n - 1 = 0$. Posons $\varepsilon_n = u_n - 1$.

Pour $n \ge p$, $A_n = \prod_{k=p}^n u_k = \exp\left(\sum_{k=p}^n \ln(1+\varepsilon_k)\right)$. On a $\ln(1+\varepsilon_n) = O(\varepsilon_n)$ et $\sum |\varepsilon_n|$ converge.

Donc $(\sum_{k=p}^{n} \ln(1+\varepsilon_k))_{n\geq p}$ converge, et on conclut avec $\prod_{k=0}^{n} u_k = \alpha A_n$, où $\alpha = \prod_{k=0}^{p-1} u_k$

b) On a $||S_n|| \le \prod_{k=0}^n ||M_k||$.

Or, $|||M_n|| - 1| \le ||M_n - I_p||$. Par a), $(\prod_{k=0}^n ||M_k||)_{n \in \mathbb{N}}$ converge. Donc $(||S_n||)_{n \in \mathbb{N}}$ est bornée.

D'autre part, $S_{n+1} - S_n = S_n(M_n - I_p)$, donc $||S_{n+1} - S_n|| \le ||S_n|| ||M_n - I_p|| = O(||M_n - I_p||)$.

Par comparaison, on en déduit que $\sum (S_{n+1} - S_n)$ converge absolument, donc $(S_n)_{n \in \mathbb{N}}$ converge.

10) Soit $\varepsilon > 0$. Pour $n \ge p$ assez grand, $\frac{1}{n+1} \le \varepsilon$,, donc on a $\forall n \ge p$, $u_{n+1} \le \sqrt{u_n + \varepsilon}$.

Donc $\forall n \geq p, u_n \leq v_n$ où $(v_n)_{n \geq p}$ définie par $v_p = u_p$ et $v_{n+1} = \sqrt{v_n + \varepsilon}$.

On vérifie (en étudiant $f: x \longmapsto \sqrt{x+\varepsilon}$) que $(v_n)_{n\in\mathbb{N}}$ converge vers le pt fixe $\lambda(\varepsilon)$ de $f: x \longmapsto \sqrt{x+\varepsilon}$.

Donc $u_n \le v_n \le \lambda(\varepsilon) + \varepsilon$ pour n assez grand. Or, $\lim_{\varepsilon \to 0} \lambda(\varepsilon) = 1$. D'où $\lambda(\varepsilon) + \varepsilon$ arbitrairement proche de 1.