Analyse. Complément

1) Montrer que les fonctions suivantes sont DSE en 0 :

a)
$$f: x \longmapsto \int_0^x \frac{(\sin t)^3}{t^2} dt$$
 ; b) $g: x \longmapsto \exp\left(\lambda \sum_{k=1}^n (x^k - 1)\right)$, c) $h: x \longmapsto \exp\left(\frac{1}{1 - x}\right)$.

2) Une involution de E est une fonction $f: E \to E$ vérifiant $f \circ f = \mathrm{Id}$.

Les questions sont indépendantes

- a) (\bigstar) On note I_n le nombre d'involutions de $E_n = \{1, 2, ..., n\}$. Montrer que $I_n = \sum_{k=0}^{\lfloor n/2 \rfloor} \frac{(n)!}{(n-2k)!2^k k!}$.
- b) On pose $c_n = \frac{I_n}{n!}$. Montrer que le rayon de convergence R de la série entière $\sum \frac{I_n}{n!} x^n$ est > 0.
- c) Montrer (en distinguant les cas $f(n+1) \neq n+1$ et f(n+1) = n+1) que $I_{n+1} = I_n + nI_{n-1}$.

En déduire une équation différentielle vérifiée par $f(x) = \sum_{n=0}^{+\infty} \frac{I_n}{n!} x^n$ et que $f(x) = \exp\left(x + \frac{x^2}{2}\right)$.

En conclure la valeur de R.

- 3) Soit X une variable aléatoire sur \mathbb{Z} , et pose $G(z) = E(z^X)$ pour |z| = 1.
- a) Montrer que $P(X=n)=rac{1}{2\pi}\int_0^{2\pi}G(e^{i\theta})\ e^{-in\theta}\ d\theta.$
- b) On suppose que $\forall \theta \in [0, 2\pi], G(e^{i\theta}) \geq 0$. Montrer que $P(X = 0) = \max_{n \in \mathbb{Z}} P(X = n)$.
- c) On suppose que $X=\sum_{k=1}^N a_k Z_k,$ où les $a_k\in\mathbb{Z}$ et où les Z_k sont des v.a. indépendantes de même loi :

$$P(Z_k = 1) = P(Z_k = -1) = p \text{ et } P(Z_k = 0) = 1 - 2p, \text{ où } p \le \frac{1}{4}$$

Montrer que la propriété du b) est vérifiée.

- 4) a) Calculer $I = \int_0^{+\infty} \frac{u}{e^u 1} du$.
- b) (\bigstar) On pose $J_n = \int_1^{+\infty} \frac{dx}{1 + x + x^2 + ... + x^{n-1}} = \int_1^{+\infty} \frac{x 1}{x^n 1} dx$. Montrer que $J_n \sim \frac{\pi^2}{6n^2}$.
- **5)** Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions définies sur [0,1]. On suppose :
- pour tout $n \in \mathbb{N}$, la fonction f_n est strictement croissante, continues, et on a $f_n(0) \leq 0$ et $f_n(1) \geq 0$
- la suite $(f_n)_{n\in\mathbb{N}}$ est décroissante, c'est-à-dire $f_{n+1}\leq f_n$
- la suite $(f_n)_{n\in\mathbb{N}}$ converge uniformément vers la fonction f sur [0,1].
- a) On note x_n l'unique zéro de f_n . Montrer que $(x_n)_{n\in\mathbb{N}}$ converge. On pose $L=\lim_{n\to+\infty}x_n$.
- b) Montrer que L est un zéro de f, c'est-à-dire f(L) = 0.

Remarque culturelle : Contre exemple si $(f_n)_{n\in\mathbb{N}}$ converge seulement simplement vers f :

Avec $f_n(x) = 2x^n - 1$, on a $x_n = 2^{-1/n}$, L = 1 et f(x) = -1 si x < 0 et f(1) = 1, donc f(L) = 1.

6) (\bigstar) Soit $f:]0, +\infty[\to]0, +\infty[$ une application de classe C^1 strictement croissante telle que $\lim_{+\infty} f = +\infty$.

Montrer que $\sum_{n\geq 1} \frac{1}{f(n)}$ converge ssi $t\longmapsto \frac{f^{-1}(t)}{t^2}$ est intégrable sur $[1,+\infty[$.

7) Soient r>0 et E l'ensemble des fonctions $f:]-1,1[\to\mathbb{R}$ somme d'une série entière.

Pour $f \in E$, on pose $T(f) :]-1,1[\mapsto \mathbb{R} \ x \longmapsto \int_0^1 f(tx) \ dt.$

- a) Montrer que T est un endomorphisme de E.
- b) Déterminer les valeurs propres de T.
- 8) (\bigstar) Montrer que $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$ est DSE au voisinage de 1, c'est-à-dire $h \longmapsto \Gamma(1+h)$ DSE en 0.
- 9) a) Soit $(u_n)_{n\in\mathbb{N}}$ réelle telle que $\sum_{n\in\mathbb{N}} |u_n-1|$ converge. Montrer que $(\prod_{k=0}^n u_k)_{n\in\mathbb{N}}$ converge.
- b) (\bigstar) On munit $\mathcal{M}_p(\mathbb{R})$ d'une norme d'algèbre $\| \|$. Soit $(u_n)_{n\in\mathbb{N}}$ une suite de matrices.

On suppose que $\sum_{n\in\mathbb{N}} \|M_n - I_p\|$ converge. On pose $S_n = \prod_{k=0}^n M_k$. Montrer que $(S_n)_{n\in\mathbb{N}}$ converge.

10) (\bigstar) On considère $u_0 = 1$ et $u_{n+1} = \sqrt{u_n + \frac{1}{n+1}}$. Montrer que $\lim_{n \to +\infty} u_n = 1$.