Algèbre, Proba, Analyse. Exercices

1) Soit $A \in \mathcal{M}_n(\mathbb{R})$ matrice de rang r.

Montrer que les assertions suivantes sont équivalentes :

- (i) $A = A^T = A^2$
- (ii) il existe $(Z_1,...,Z_r)$ famille orthonormée de vecteurs de \mathbb{R}^n telle que $A = \sum_{j=1}^r Z_j Z_j^T$.
- 2) On considère une urne contenant n boules numérotées de 1 à n, dans laquelle on effectue n tirages successifs sans remise. On note X_k le numéro de la boule tirée à la k-ième étape. On dit qu'il y a un pic à la k-ième étape si $X_k > \max(X_1, ..., X_{k-1})$. On convient qu'il y a toujours un pic au premier tirage.
- a) On note S_n le nombre de pics au cours des n tirages. Déterminer $P(S_n = n)$ et $P(S_n = 1)$.
- b) On considère A_k : "il y a un pic à l'étape k". Montrer que $P(A_k) = \frac{1}{k}$.
- c) Donner l'espérance de S_n .
- 3) Soit $(a_n)_{n\in\mathbb{N}}$ une suite réelle. On suppose que $a_n \sim \alpha \ln n$ lorsque $n \to +\infty$, avec $\alpha > 0$.
- a) Montrer que la série de terme général $\exp(-a_n)$ converge si $\alpha > 1$ et diverge si $\alpha < 1$.
- b) Peut-on conclure si $\alpha = 1$?
- **4)** Soit $A \in \mathcal{M}_n(\mathbb{C})$. On pose $C(A) = \{ M \in \mathcal{M}_n(\mathbb{C}) \mid AM = MA \}$.
- a) On suppose A diagonalisable. Montrer que dim $C(A) \ge n$.
- b) Montrer que A est limite d'une suite $(A_k)_{k\in\mathbb{N}}$ de matrices diagonalisables.
- c) $(\bigstar \bigstar)$ Soit $(B_k)_{k \in \mathbb{N}}$ une suite de matrices convergeant vers $B \in \mathcal{M}_N(\mathbb{C})$ avec $\operatorname{rg} B = r$.

Montrer que $rg(B_k) \ge r$ pour k assez grand.

En déduire que si $\forall k \in \mathbb{N}$, dim $(\operatorname{Ker} B_k) \geq p$, alors dim $(\operatorname{Ker} B) \geq p$.

- d) Montrer qu'on a toujours dim $C(A) \ge n$.
- **5)** (\bigstar) a) Soit $q \in \left[\frac{1}{2}, 1\right[$. On note $A = \left\{x \in \mathbb{R} \mid \exists (\varepsilon_n)_{n \in \mathbb{N}^*} \in \{0, 1\}^{\mathbb{N}^*}, x = \sum_{n=1}^{+\infty} \varepsilon_n q^n\right\}$.

Montrer que $A = \left[0, \frac{q}{1-q}\right]$.

b) $(\bigstar \bigstar)$ On note Δ l'ensemble des zéros des polynômes de coefficients dans $\{0,1\}$.

Montrer que tout réel $\lambda \in \left[\frac{1}{2}, 1\right]$ appartient à l'adhérence de Δ .

Corrigé/indications

1) - Supposons (i). On a $A = A^2$, donc A est une projection : $E_0 \oplus E_1 = E$. On a $r = \dim E_1$.

On a $A = A^T$, donc A est auto-adjoint et ainsi (cf th spectral) $E_0 \oplus^{\perp} E_1 = E$.

Donc il existe une matrice orthogonale $U \in O_n(\mathbb{R})$ telle que $A = U \left(\begin{array}{c|c} I_r & O \\ \hline O & O_{n-r} \end{array} \right) U^T$.

On a $\left(\frac{I_r \mid O}{O \mid O_{n-r}}\right) = \sum_{j=1}^r E_{ii} = \sum_{j=1}^r E_j E_j^T$ qui correspond au cas particulier fondamental.

On conclut avec $A = U(\sum_{j=1}^r E_j E_j^T)U^T = \sum_{j=1}^r Z_j Z_j^T$, où $Z_j = UE_j = U_j$.

De plus, $(Z_1,...,Z_r)=(U_1,...,U_r)$ est bien une famille orthonormée.

- Supposons (ii).

Première méthode: On peut compléter $(Z_1,...,Z_r)$ est une base orthonormée $(U_1,...,U_n)$ de \mathbb{R}^n .

On a donc $\sum_{j=1}^{r} Z_j Z_j^T = U \left(\begin{array}{c|c} I_r & O \\ \hline O & O_{n-r} \end{array} \right) U^T$, donc A est orthosemblable à $J = \left(\begin{array}{c|c} I_r & O \\ \hline O & O_{n-r} \end{array} \right)$.

Or, on a $J = J^2$, donc $A = A^2$. Et on vérifie directement que $A = A^T$.

Deuxième méthode : On a $Z_j Z_j^T$ symétrique donc $A^T = A$.

Et
$$A^2 = \sum_{1 \le i, j \le r} Z_j Z_j^T Z_i Z_j^T = A \text{ car } \forall i \ne j, \ Z_j^T Z_i = (Z_j \mid Z_i) = 0 \text{ et } Z_j^T Z_j = \|Z_j\|^2 = 1.$$

Remarque: Soit a la projection orthogonale a sur $F = \text{Vect}(e_1, ..., e_r)$, où $(e_1, ..., e_r)$ BON de F.

On a $\forall x \in E$, $a(x) = \sum_{j=1}^r \langle e_j, x \rangle \ e_j$, d'où matriciellement $AX = \sum_{j=1}^r Z_j Z_j^T X$, car $Z_j^T X = (Z \mid X)$.

2) a)
$$P(S_n = n) = P(X_1 < X_2 < ... < X_n) = P((X_1, ..., X_n) = (1, 2, ..., n)) = \frac{1}{n!}$$

$$P(S_n = 1) = P(X_1 > X_2, X_1 > X_3, ..., X_1 > X_n) = P(X_1 = n) = \frac{1}{n}$$

b) Première méthode (la plus élégante). On a $P(A_k) = P(X_k = \max(X_1, ..., X_k))$.

La loi de $(X_1,...,X_k)$ est la même que la loi de $(X_{\alpha(1)},...,X_{\sigma(k)})$ pour toute permutation de [1,k].

Donc les $B_j = (X_j = \max(X_1, ..., X_k))$, pour $j \in [1, k]$, ont même probabilité.

Or, les X_j sont distincts. Donc les B_j sont disjoints. Comme $\bigsqcup_{j=1}^k B_j = \Omega$, alors $P(B_j) = \frac{1}{k}$.

Donc
$$P(A_k) = \frac{1}{k}$$
. D'où $E(S_n) = \sum_{k=1}^n \frac{1}{k}$.

Seconde mathode: On peut aussi calculer $P(A_k)$ par un argument combinatoire.

On considère que l'univers est l'ensemble des permutations de $[\![1,n]\!]$ muni de la loi uniforme.

On a
$$P(A_k, X_k = j) = P(X_1 < j, ..., X_{k-1} < j, X_k = j) = \frac{(j-1)(j-2)...(j-k+1)(n-k)!}{n!}$$

En effet, une fois fixé X_j , on choisit $X_1,...,X_{k-1}$ dans [1,j-1], puis les (n-k) derniers.

Donc
$$\forall j \ge k$$
, $P(A_k, X_k = j) = \frac{(j-1)!(n-k)!}{(j-k)!n!} = \frac{(j-1)!}{(j-k)!k!} / \binom{n}{k} = \frac{1}{k} \binom{j-1}{k-1} / \binom{n}{k}$.

D'où
$$P(A_k) = \sum_{j=k}^n P(A_k, X_k = j) = \sum_{j=1}^n \frac{1}{k} \binom{n}{k} \binom{j-1}{k-1} = \frac{1}{k}$$
 par la formule de la crosse de Hockey.

c) On a
$$S_n = \sum_{k=1}^n 1_{A_k}$$
. Donc $E(S_n) = \sum_{k=1}^n P(A_k)$.

3) a) On note que
$$\exp(-\beta \ln n) = \frac{1}{n^{\beta}}$$
.

- Supposons $\alpha > 1$. On choisit β tel que $1 < \beta < \alpha$.

Pour *n* assez grand, $a_n \ge \beta \ln n$, donc $\exp(-a_n) \le \frac{1}{n^{\beta}}$. Donc $\sum \exp(-a_n)$ converge par comparaison.

- Supposons $\alpha < 1.$ On choisit β tel que $\alpha < \beta < 1.$

Pour *n* assez grand, $a_n \leq \beta \ln n$, donc $\exp(-a_n) \geq \frac{1}{n^{\beta}}$. Donc $\sum \exp(-a_n)$ diverge.

b) Lorsque $\alpha=1,$ on ne peut rien dire. On utilise les séries de Bertrand :

En considérant l'intégrale associée, on montre en effet que $\sum \frac{1}{n(\ln n)^{\beta}}$ converge ssi $\beta > 1$.

Or, avec $a_n = n(\ln n)^{\beta}$, on a $\ln a_n = \ln n + \beta \ln \ln n$, donc $\ln a_n \sim \ln n$ dans tous les cas.

4) a) A et M commutent ssi les sev propres E_{λ_j} de A sont stables par M. Dans une base \mathcal{B} adaptée à $E_{\lambda_1} \oplus ... \oplus E_{\lambda_p} = E$, M commute avec A ssi la matrice de dans la base l'endomorphisme m associé à M est diagonale par blocs. On en déduit dim $C(A) = \sum_{j=1}^p m_j^2$, où $m_j = \dim E_{\lambda_j}$.

On a $\sum_{j=1}^{p} m_j^2 \ge \sum_{j=1}^{p} m_j = n$. Donc dim $C(A) \ge n$, avec égalité ssi A admet n valeurs propres distinctes.

b) On a $A = PTP^{-1}$, avec T triangulaire supérieure de coefficients diagonaux λ_j .

On considère $A_k = PT_kP^{-1}$, où T_k est obtenu en emplaçant λ_j par $\lambda_j + \frac{j}{k}$.

Pour k assez grand, les $\lambda_j + \frac{j}{k}$, avec $1 \le j \le n$, sont deux à deux distincts, donc T_k diagonalisable.

On a donc $A = \lim_{n \to +\infty} A_k$ et A_k diagonalisable pour k assez grand.

c) En utilisant le th de la base extraite sur les colonnes puis sur les lignes, on montre que B admet une sous-matrice C carrée inversible d'ordre r. On a $\lim_{n\to+\infty} C_k = C$, donc $\lim_{k\to+\infty} \det C_k = \det C \neq 0$.

Pour k assez grand, C_k est inversible, et ainsi $\operatorname{rg} B_k \ge \operatorname{rg} C_k = r$.

Si on avait dim Ker B < p, alors $\operatorname{rg} B \ge N + 1 - p$, et donc $\operatorname{rg} B_k \ge N + 1 - p$ pour k assez grand.

Ce qui contredirait dim Ker $B_k \geq p$.

d) On a dim C(A) = dim Ker ϕ_A , où $\phi_A : \mathcal{M}_n(\mathbb{C}) \to \mathcal{M}_n(\mathbb{C})$ $M \longmapsto AM - MA$.

Avec a) et b), avec $\lim_{k\to+\infty} A_k = A$, on a $\forall k \in \mathbb{N}$, dim $\operatorname{Ker} \phi_{A_k} = \dim C(A_k) \ge n$ et $\lim_{k\to+\infty} \phi_{A_k} = \phi_A$. Par c), on a donc dim $\operatorname{Ker} \phi_A \ge n$.

5) a) On vérifie aisément que $A\subset \left[0,\frac{q}{1-q}\right]$. Réciproquement, soit $x\in A.$

On définit $(\varepsilon_n)_{n\geq 1}$ par récurrence forte : on prend $\varepsilon_n = \begin{cases} 1 \text{ si } x \leq \sum_{k=1}^{n-1} \varepsilon_k q^k + q^n \\ 0 \text{ sinon} \end{cases}$

Par construction, $\sum_{n=1}^{+\infty} \varepsilon_n q^n \leq x$. Par récurrence forte, on montre (*) : $x \leq \sum_{k=1}^n \varepsilon_k q^k + \sum_{k=n+1}^{+\infty} q^k$.

Remarque : il est essentiel pour prouver (*) que $q \ge \frac{1}{2}$, de sorte que $\max \left(q^n, \sum_{k=n+1}^{+\infty} q^k\right) = \sum_{k=n+1}^{+\infty} q^k$.

b) Immédiat si $\lambda = 1$. Soit $\lambda \in \left[\frac{1}{2}, 1\right[$. Par a), il existe $(\varepsilon_n)_{n \in \mathbb{N}^*}$ telle que $\varepsilon_n \in \{0, 1\}$ et $1 = \sum_{n=1}^{+\infty} \varepsilon_n \ \lambda^n$.

Posons $P_n(x) = 1 - \sum_{k=1}^n \varepsilon_k \ x^k$. On a $0 \le P_n(\lambda) \le \sum_{k=n+1}^{+\infty} \varepsilon_k \ \lambda^k = \frac{\lambda^{n+1}}{1-\lambda}$. Donc $\lim_{n \to +\infty} P_n(\lambda) = 0$.

Soit $\alpha > 0$. Pour prouver qu'on peut approcher λ à α près par une racine de P_n , il suffit de prouver que $P_n(\lambda + \alpha) \leq 0$ pour n assez grand.

Il existe p tel que $\varepsilon_p = 1$. On a $P_n(\lambda + \alpha) \leq P_n(\lambda) + \lambda^p - (\lambda + \alpha)^p$.

Comme $\lim_{n\to+\infty} P_n(\lambda+\alpha) = \lambda^p - (\lambda+\alpha)^p < 0$, alors $P_n(\lambda+\alpha) < 0$ pour n assez grand.