Algèbre. Exercice

Partie A. Coréduction

- 1) a) Montrer que si deux endomorphismes u et v sont diagonalisables et commutent, alors ils sont codiagonalisables
- : il existe une base de vecteurs propres communes.
- b) Montrer que si deux endomorphismes u et v commutent et sont trigonalisables, ils sont cotrigonalisables.
- c) (\bigstar) Soit $(u_i)_{i\in\mathbb{N}}$ une famille d'endomorphismes diagonalisables qui commutent deux à deux.

Montrer les u_i sont codiagonalisables.

- 2) a) Soient A et $N \in \mathcal{M}_n(\mathbb{C})$, avec N nilpotente et AN = NA. Montrer que $\chi_{A+N} = \chi_A$.
- b) (X) Soient A et $N \in \mathcal{M}_n(\mathbb{C})$, avec N nilpotente et $AN = O_n$.

Montrer (sans utiliser ce qui précède) que $\chi_{A+N} = \chi_A$.

- **3)** Soient A et $B \in \mathcal{M}_n(\mathbb{C})$ telles que $AB BA = \lambda A$, avec $\lambda \neq 0$.
- a) Montrer que A n'est pas inversible.
- b) Montrer que Ker A est stable par B.
- c) Montrer que A est nilpotente et qu'il existe $P \in GL_n(\mathbb{C})$ telle que $P^{-1}AP$ est triangulaire supérieure stricte et $P^{-1}BP$ est triangulaire supérieure.
- **3)** bis) a) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Montrer que A est nilpotente ssi $\forall k \in [1, n], \operatorname{tr}(A^k) = 0$.
- b) On revient aux hypothèses de 3) : $AB-BA=\lambda A,$ avec $\lambda\neq 0.$ Montrer que $A^kB-BA^k=\lambda kA^k.$

Avec a), donner une autre preuve de la nilpotence de A.

Partie B. Haüsdorffien et quotients de Rayleigh

- 4) Soit $u \in S(E)$, $(e_1, ..., e_n)$ une BON de vecteurs propres, de valeurs propres $\lambda_1 \leq ... \leq \lambda_k$.
- a) On pose $G_k = \text{Vect}(e_1, ..., e_k)$ et $H_k = \text{Vect}(e_k, ..., e_n)$.

Montrer que $\sup_{x \in G_k, x \neq 0} \frac{\langle x, u(x) \rangle}{\|x\|^2} = \lambda_k$. On a de même $\inf_{x \in H_k, x \neq 0} \frac{\langle x, u(x) \rangle}{\|x\|^2} = \lambda_k$.

- b) Montrer que $\lambda_k = \inf_{F \text{ sev de dim } k} \left(\sup_{x \in F, x \neq 0} \frac{\langle x, u(x) \rangle}{\|x\|^2} \right) = \lambda_k.$
- **5)** Soit $u \in S(E)$ et $v \in S^+(E)$. On note $\lambda_1 \leq ... \leq \lambda_n$ des valeurs propres de u.
- a) Montrer que $\max(\operatorname{Sp}(u+v)) \ge \max(\operatorname{Sp} u)$.
- b) (\bigstar) On suppose rg v=1. Montrer que les valeurs propres classées $\mu_1,...,\mu_n$ de u+v vérifient

$$\lambda_1 \le \mu_1 \le \lambda_2 \le \dots \le \lambda_n \le \mu_n$$

Indications:

1) a) Chaque sev propre E_{λ} de u est stable par v. Les restrictions de v à ces sev propres sont diagonalisables. On considère une base composée de vecteurs propres des $v_{|E_{\lambda}}$.

b) On procède par récurrence sur $n = \dim E \ge 1$. Il existe λ valeur propre de u. L'ev E_{λ} est stable par u. alors E_{λ} est stable par u et sa restriction à E_{λ} est diagonalisable. Comme $\dim E_{\lambda} \ge 1$, v admet donc un vecteur propre $x \in E_{\lambda}$. Ce vecteur x est donc aussi vecteur propre de v.

Donc dans une base de la forme
$$\mathcal{B} = (x, ...)$$
, on a $\operatorname{Mat}_{\mathcal{B}} u = \begin{pmatrix} \lambda & * \\ \hline O & A \end{pmatrix}$ et $\operatorname{Mat}_{\mathcal{B}} v = \begin{pmatrix} \mu & * \\ \hline O & A \end{pmatrix}$.

Comme $u \circ v = v \circ u$, alors B = BA. De plus, A et B sont trigonalisables (car χ_A divise χ_u donc est scindé).

Par récurrence, A et B sont cotrigonalisables, c'est-à-dire qu'il existe $Q \in GL_{n-1}(K)$ telle que les matrices $P^{-1}AP$ et $P^{-1}BP$ sont triangulaires supérieures.

Avec
$$P = \begin{pmatrix} 1 & O \\ \hline O & Q \end{pmatrix}$$
, les matrices $P^{-1} \begin{pmatrix} \lambda & * \\ \hline O & A \end{pmatrix} P$ et $P^{-1} \begin{pmatrix} \lambda & * \\ \hline O & B \end{pmatrix} P$ sont triangulaires supérieures.

c) On procède par récurrence forte sur $n = \dim E$.

Immédiat si tous les u_i sont des homothéties. Sinon, il existe i tel que u_i n'est pas une homothétie.

Les sev propres de u_i sont stables par les u_i . On applique l'hyp de rec forte sur ces restrictions.

2) a) A et N commutent et sont trigonalisables (on est sur \mathbb{C}).

Par 1) b), A et N sont cotrigonalisables, et N nilpotente (donc la matrice triangulaire est sup stricte).

b) On a $\operatorname{Im} N \subset \operatorname{Ker} A$. On choisit une base \mathcal{B} adaptée à $\operatorname{Im} N \oplus S = \mathbb{C}^n$.

On a alors
$$\operatorname{Mat}_{\mathcal{B}} n = \begin{pmatrix} M & * \\ \hline O & O \end{pmatrix}$$
 et $\operatorname{Mat}_{\mathcal{B}} a = \begin{pmatrix} \hline O & * \\ \hline O & B \end{pmatrix}$.

Comme M est nilpotente (restriction de n), on a $\chi_M(X) = X^r$, où $r = \operatorname{rg} N$. Donc $\chi_{n+a} = X^r \chi_B = \chi_a$.

- 3) a) On a $AB = (B + \lambda I)A$. Si A était inversible, B et $B + \lambda I$ seraient semblables : absurde (cf trace).
- b) Si AX = 0, alors $A(BX) = (B + \lambda I)AX = 0$, donc $BX \in \text{Ker } A$.
- c) On considère une base adaptée à $\operatorname{Ker} A \oplus S = \mathbb{C}^n$ qui trigonalise la restriction de b à $\operatorname{Ker} A$.

On a alors
$$\operatorname{Mat}_{\mathcal{B}} a = \left(\begin{array}{c|c} O & * \\ \hline O & A_1 \end{array}\right)$$
 et $\operatorname{Mat}_{\mathcal{B}} b = \left(\begin{array}{c|c} T & * \\ \hline O & B_1 \end{array}\right)$, avec T triangulaire supérieure.

Comme $AB - BA = \lambda A$, on a $A_1B_1 - B_1A_1 = \lambda A_1$, et on conclut par récurrence forte en considérant une matrice de passage $P = \begin{pmatrix} I_r & O \\ \hline O & Q \end{pmatrix}$, avec $Q^{-1}A_1Q$ et $Q^{-1}B_1Q$ triangulaires sup.

3) bis) a) Le sens direct est immédiat, car 0 est la seule valeur propre de A (dont de A^k) sur \mathbb{C} .

Réciproquement, supposons $\forall k \in [1, n], \operatorname{tr}(A^k) = 0.$

Alors $\operatorname{tr}(P(A))=0$ pour tout polynôme P de degré $\leq n$ tel que P(0)=0.

Par Lagrange, il existe un polynôme P de degré $\leq n$ tel que P(0) = 0 et $\forall \lambda \in \operatorname{Sp}(A) \setminus \{0\}, P(\lambda) = 1$.

Alors tr(P(A)) est le nombre m de valeurs propres non nulles de A (avec multiplicité). Donc m = 0.

b) Par récurrence sur k, on a $A^kB=(B+\lambda I)A^k$, c'est-à-dire $A^kB-BA^k=\lambda kA^k$.

Donc $\operatorname{tr}(\lambda k A^k) = 0$, et ainsi $\operatorname{tr}(A^k) = 0$ pour tout $k \in \mathbb{N}^*$.

- 4) et 5) cf TD entraînement n°5. En particulier :
- 4) b) Noter que si dim F = k, alors $F \cap H_k$ contient un vecteur non nul x.
- **5)** a) Utiliser $\langle x, (u+v)(x) \rangle = \langle x, u(x) \rangle + \langle x, v(x) \rangle$.