Algèbre générale. Corrigés

Algèbre générale: arithmétique, nombres complexes, polynômes

■ Exo 1 : Les points (distincts) d'affixes a,b,c forment un triangle équilatéral ssi $\frac{c-a}{b-a}=e^{i\pi/3}$ ou $\frac{c-a}{b-a}=e^{-i\pi/3}$.

Or, $(x = e^{i\pi/3} \text{ ou } x = e^{-i\pi/3}) \text{ ssi } x \text{ racine de } (x^2 - x + 1).$

Donc a, b, c forment un triangle équilatéral ssi $\left(\frac{c-a}{b-a}\right)^2 - \left(\frac{c-a}{b-a}\right) + 1 = 0$.

En développant, on obtient la CNS $a^2 + b^2 + c^2 = a + b + c$.

 \blacktriangleleft Exo 2 : Notons $a_1,...,a_r$ les racines de P, et $m_1,...,m_r$ leurs ordres de multiplicité.

Sur \mathbb{C} , P est scindé, donc $\sum_{i=1}^{r} m_i = n$.

Le nombre de racines communes à P et P' est $\sum_{i=1}^{r} (m_i - 1)$. C'est donc le degré de pgcd(P, P').

Donc P' divise P ssi $\sum_{i=1}^{r} (m_i - 1) = n - 1$, c'est-à-dire r = 1.

Réciproque immédiate. Les solutions sont donc les $P(X) = \lambda (X - a)^n$.

◄ Exo 3 : Supposons $P(X)P(X-1) = P(X^2)$ avec P non nul. Alors P est unitaire.

Si z est racine de P, alors z^2 est racine. On en déduit que que |z|=0 ou 1.

En effet, sinon, il y a aurait une infinité de ra cines (les $z^{(2^n)}$ érant alors distincts).

De même, si z est racine, $(z+1)^2$ aussi.

0 ne peut être racine, car sinon, 1 puis 2^2 seraient racines, ce qui est absurde.

Donc |z| = |z + 1| = 1, et on en déduit (intersection de cercles) $z \in \{e^{i2\pi/3}, e^{-2i\pi/3}\}$.

Comme P est réel, les deux racines conjuguées ont même ordre de multiplicité. Et P est unitaire (car $\lambda^2 = \lambda$ implique $\lambda = 1$). Donc $P = (X^2 + X + 1)^m$, avec $m \in \mathbb{N}$. Réciproque par calcul direct.

◄ Exo 4: Posons $A(X) = (X+1)^n - (X-1)^n$.

On a z racine de A ssi $z \neq 1$ et $\frac{z+1}{z-1} = e^{i\theta}$, avec $\theta = \frac{2k\pi}{n}$ (avec $0 \leq k < n$).

On at $\frac{z+1}{z-1} = e^{i\theta} \text{ ssi } z = \frac{e^{i\theta}+1}{e^{i\theta}-1} = \frac{\cos(\theta/2)}{i\sin(\theta/2)}$.

Les racines de A sont donc $z_k = \frac{\cos(k\pi/n)}{i\sin(k\pi/n)}$, avec 0 < k < n (on exclut k = 0).

Or, A est de degré (n-1) et de coefficient dominant 2n.

On en déduit que A est scindé à racines simples et $A(X) = 2n \prod_{k=1}^{n-1} (X - z_k)$.

◄ Exo 5 : a) Supposons $\exists v, w = v \circ u$. Alors Ker $u \subset$ Ker w.

Réciproquement, supposons $\operatorname{Ker} u \subset \operatorname{Ker} w$.

Soit S un supplémentaire de Ker u dans E. On a $S \oplus \operatorname{Ker} u = E$.

On sait que $\hat{u}: S \to \operatorname{Im} u \ x \longmapsto u(x)$ est un isomorphisme.

On considère alors v définie par $\forall x \in \text{Im } u, \ v(x) = (\widehat{u})^{-1}(x) \in E$.

On choisit v arbitrairement sur un suppémentaire de $\operatorname{Im} u$. Ce qui définit v complètement.

On a bien $w = v \circ u$.

Variante: On définit v à partir d'une base de Im u, en prenant $v(e) = (\widehat{u})^{-1}(x) \in E$.

b) Supposons $\exists u, w = v \circ u$. Alors $\operatorname{Im} w \subset \operatorname{Im} v$.

Réciproquement, supposons $\operatorname{Im} w \subset \operatorname{Im} v$.

On considère $(e_j)_{j\in I}$ une base de E.

Pour tout j, on a $w(e_j) \in \operatorname{Im} w \subset \operatorname{Im} v$, donc il existe f_j tel que $v(f_j) = w(e_j)$.

On définit u linéaire par $u(e_j) = f_j$ pour tout J.

On a bien $w(e_j) = (v \circ u)(e_j)$ pour les $e\{j\}$ donc par linéarité, $w = v \circ u$.

▶ Exo 6 : a) On a $AE_{ij} = \sum_{k=1}^{n} a_{ki} E_{kj}$. On considère la matrice de u dans la base $(E_{ij})_{1 \leq i \leq n, 1 \leq j \leq n}$ pris dans un ordre judicieux de sorte que la matrice de u soit une matrice diagonale par blocs où tous les blocs sont égaux à la matrice A. Il suffit de classer les E_{ij} de sorte que les ceux qui ont le même j soient consécutifs : $\mathcal{B} = (E_{k,1})_{1 \leq k \leq n} \bigcup (E_{k,2})_{1 \leq k \leq n} \bigcup ... \bigcup (E_{k,n})_{1 \leq k \leq n}.$

b) On a $u = w \circ v$ où $\omega : M \longmapsto M \longmapsto MB$.

En effet, $E_{ij}A = \sum_{k=1}^{n} a_{jk}E_{ik}$. On obtient alors dans une base adéquate la matrice de u diagonale par blocs où tous les blocs sont égaux à la matrice B^{T} . Donc det $w = (\det B^{T})^{n} = (\det B)^{n}$.

On vérifie de façon analogue au a) que $\det w = (\det B)^n$, donc $\det u = \det w \times \det v = (\det A \det B)^n$.

■ Exo 7: Il s'agit ici de l'interpolation d'Hermite (variante de l'interpolation de Lagrange).

L'idée consiste en fait à prouver que $u: \mathbb{R}_3[X] \to \mathbb{R}^4 \ P \longmapsto (P(a), P(b), P'(a), P'(b))$ est bijective.

Or, u est linéaire et injective, onc bijective par dimension, car dim $\mathbb{R}_3[X] = \dim \mathbb{R}^4$.

Montrons que u est injective : Si u(P) = 0, alors a et b sont racines de P d'ordre ≥ 2 , donc P = 0 (car deg $P \leq 3$).

◄ Exo 8 : On a tr $(\sum_{i=1}^r p_i)$ = tr (Id) = n. Commerg (p_i) = tr (p_i) .Donc $\sum_{i=1}^r \operatorname{rg} p_i = n$.

On a $\sum_{i=1}^{r} p_i = \text{Id}$, donc a fortiori $\sum_{i=1}^{r} \text{Im } p_i = E$.

Mais on a $\sum_{i=1}^r \operatorname{rg} p_i = n$, c'est-à-dire $\sum_{i=1}^r \dim(\operatorname{Im} p_i) = \dim E$.

On en déduit $\bigoplus_{i=1}^r \operatorname{Im} p_i = E$.

Soit $x \in E$, on a $x = \sum_{i=1}^r p_i(x)$ est la décomposition de x dans $\bigoplus_{i=1}^r \operatorname{Im} p_i$

Donc $p_i(x)$ est le projeté de x sur $\operatorname{Im} p_i$ parallèlement à $\bigoplus_{j\neq i} \operatorname{Im} p_j$.

Donc Im $p_j \subset \text{Im } p_i$ pour tout $i \neq j$, donc $p_i \circ p_j = 0$.

Algèbre linéaire et bilinéaire

◄ Exo 1 : Le polynôme $P(x) = x^3 - x - 1$ annule A.

On vérifie (par une étude de fonctions) que P admet une unique racine réelle α , et que $\alpha > 0$.

Donc P admet dans \mathbb{C} des racines $\alpha, \beta, \overline{\beta}$, avec β non réel, et donc P est scindé à racines simples.

Donc A est diagonalisable sur \mathbb{C} , et est semblable à une matrice $\mathrm{Diag}(\alpha,...,\alpha,\beta,...,\beta,\overline{\beta},...,\overline{\beta})$.

Comme A est réel, le polynôme caractéristique de A est réel, donc il y a autant de β que de $\overline{\beta}$.

On en déduit que det $A = \alpha^p (\beta \overline{\beta})^q = \alpha^p |\beta|^{2p} > 0$.

 \blacksquare Exo 2: On a $p^2 = p$ et $q^2 = q$.

On a p+q projecteur ssi $(p+q)^2=p+q$, donc ssi $p\circ q+q\circ p=0$.

Supposons p + q projecteur. On a $p \circ q + q \circ p = 0$.

En composant par $p, p \circ q + p \circ q \circ p = 0$, c'est-à-dire $p \circ q \circ (p + \mathrm{Id})$.

Or, p + Id inversible (valeurs propres 1 et 2), donc $p \circ q = 0$, et ainsi $q \circ p = 0$.

Si $p \circ q = q \circ p = 0$, alors p + q projecteur.

De plus, p et q commute, donc sont codiagonalisables (car Ker p et Im p stables par q).

On en déduit qu'il existe une base de E tel que $\operatorname{Mat}_{\mathcal{B}} p = \begin{pmatrix} I & & & \\ & O & & \\ & & O \end{pmatrix}$ et $\operatorname{Mat}_{\mathcal{B}} q = \begin{pmatrix} O & & & \\ & I & & \\ & & O \end{pmatrix}$.

On en conclut que p+q est la projection sur $(\operatorname{Im} p \oplus \operatorname{Im} q)$ parallèlement à $\operatorname{Ker} p \cap \operatorname{Ker} q$.

 \blacktriangleleft Exo 3 : On note u l'endomorphisme canoniquement associé à u.

On a A semblable à une matrice dont les (n-1) premières colonnes sont nulles.

On peut en conclure aisément a).

Supposons désormais tr A=0. Justifier que $\operatorname{Im} u\subset \operatorname{Ker} u$, puis une base (e_{n-1}) de $\operatorname{Im} u$, complétée en une base $(e_1...,e_{n-1})$ de $\operatorname{Ker} u$. On complète avec $e_n=u(e_{n-1})$.

- **■** Exo 4: a) cf TD 07
- b) On note que $\operatorname{rg}(A \lambda I_n) \ge n 1$ (car les n 1 dernières colonnes de $A \lambda I_n$ sont indépendantes).

Donc dim $E_{\lambda} \leq 1$ pour tout λ .

Donc A est diagonalisable ssi A admet n valeurs propres distinctes, donc ssi χ_A scindé à racines simples.

Réic
proquement, supposons A^2 diagonalisable.

Ainsi,
$$P(X) = \prod_{\lambda \in \operatorname{Sp}(A^2)} (X - \lambda)$$
 annule A^2 , c'est-à-dire $\prod_{\lambda \in \operatorname{Sp}(A^2)} (A^2 - \lambda I) = O$.

Donc
$$Q(X) = P(X^2) = \prod_{\lambda \in \operatorname{Sp}(A^2)} (X^2 - \lambda)$$
 annule A .

Or, A et donc A^2 sont inversibles, donc les $\lambda \in \operatorname{Sp}(A^2)$ sont non nuls.

Tout $\lambda \in \mathbb{C}$ non nul, admet deux racines carrées μ et $-\mu$ distinctes.

Donc Q est scindé à racines simples, et ainsi, A est diagonalisable.

Remarque : Faux si A n'est pas inversible. Contre-exemple : $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

Autre solution : A et A^2 commute, donc les sev propres de A^2 sont stables par A.

Dans une base adaptée, on a donc

$$A^{2} = P\left(\begin{array}{c|c} \lambda_{1}I & & \\ \hline & \ddots & \\ \hline & & \lambda_{r}I \end{array}\right) P^{-1} \text{ et } A = P\left(\begin{array}{c|c} B_{1} & & \\ \hline & \ddots & \\ \hline & & B_{r} \end{array}\right) P^{-1}$$

Sur chaque sev propre E_{λ} de A^2 , on a donc $(B_i)^2 = \lambda_i I$.

Comme λ_j non nul, alors $X^2 - \lambda_j$ scindé à racines simples, donc B_j diagonalisable.

Donc A diagonalisable.

b) Le sens direct est simple à vérifier (on se ramène au cas où A est diagonale).

Réciproquement supposons A^2 diagonalisable et Ker $A = \text{Ker } A^2$.

Notons $\Delta = \{\lambda_1, ..., \lambda_r\}$ l'ensemble des valeurs propres non nulles de A^2 .

On a donc $\operatorname{Ker}(A^2) \oplus \operatorname{Ker}(A^2 - \lambda_1 I) \oplus \operatorname{Ker}(A^2 - \lambda_2 I) \oplus ... \oplus \operatorname{Ker}(A^2 - \lambda_r I) = E$.

Or, si on note μ_j et $-\mu_j$ les racines carrées de λ_j , on a $\operatorname{Ker}(A^2 - \lambda_j I) = \operatorname{Ker}(A^2 - \mu_j I) \oplus \operatorname{Ker}(A^2 + \mu_j I)$.

En effet, sur $F = \text{Ker}(A^2 - \lambda_j I)$, on a $a^2 = \lambda_j \text{ Id}$, donc a diagonalisable de valeurs propres λ_j et $-\lambda_j$.

Comme Ker $A = \text{Ker } A^2$, alors Ker $A \oplus \text{Ker}(A - \mu_1 I) \oplus \text{Ker}(A + \mu_1 I) \oplus ... = E$.

Donc A diagonalisable.

Autre solution (conseillée): On utilise comme au a) le fait que les sev propres E_{λ} de A^3 sont stables par A. Comme $\operatorname{Ker} A = \operatorname{Ker} A^2$, il existe un changement de base tel que

$$A^{2} = P\left(\begin{array}{c|c} O & & & \\ \hline & \lambda_{1}I & & \\ \hline & & \ddots & \\ \hline & & & \lambda_{r}I \end{array}\right) P^{-1} \text{ et } A = P\left(\begin{array}{c|c} O & & & \\ \hline & B_{1} & & \\ \hline & & \ddots & \\ \hline & & & B_{r} \end{array}\right) P^{-1}$$

On a alors $(B_j)^2 = \lambda_j I$, avec λ_j non nul, donc B_j diagonalisable. Donc A diagonalisable.

c) Supposons A antisymétrique. Alors A^2 est symétrique réelle, donc diagonalisable.

Or,
$$A^2 = -A^T A$$
, donc Ker $A = \operatorname{Ker} A^2$ (car $(X \mid A^2 X) = -\|AX\|^2$ implique Ker $A^2 \subset \operatorname{Ker} A$).

On conclut par b) que A est diagonalisable..

De plus, les valeurs propres de $A^2 = -A^T A$ sont dans \mathbb{R}^- , donc celles de A dans $i\mathbb{R}$.

d) Le rang de A diagonalisable est le nombre de racines non nulles de χ_A .

Or, par c), A est diagonalisable et les valeurs propres de A non nulles sont non réelles, donc les valeurs propres non nulles sont deux à deux conjuguées (car χ_A réel). Donc rg A pair.

Remarque: La relation $\forall X \in \mathbb{R}^n$, $(X \mid AX) = 0$ prouve que 0 est la seule racine réelle éventuelle.

 $Autre\ solution$: Soit A antisymétrique. On considère une BON de \mathbb{R}^n adaptée à $\operatorname{Ker} A \oplus (\operatorname{Ker} A)^{\perp} = \mathbb{R}^n$.

On se ramène alors au cas où $A = U\left(\begin{array}{c|c} O & C \\ \hline O & B \end{array}\right) U^T$, où $B \in \mathcal{M}_r(\mathbb{R})$, avec $r = \operatorname{rg} A$

Or, $\left(\begin{array}{c|c} O & C \\ \hline O & B \end{array}\right)$ est antisymétrique (comme A), donc C = O.

On en déduit que $A = U\left(\begin{array}{c|c} O & C \\ \hline O & B \end{array}\right)U^T$, que $\operatorname{rg} A = \operatorname{rg} B = r$ et donc B est inversible.

Donc det $B \neq 0$. Or, det $B = \det(B^T) = \det(-B) = (-1)^r \det B$, et donc r pair.

◄ Exo 6 : a) On a
$$M^k = \begin{pmatrix} A^k & * \\ \hline O & B^k \end{pmatrix}$$
, donc pour tout polynôme P , on a $P(M) = \begin{pmatrix} P(A) & * \\ \hline O & P(B) \end{pmatrix}$.

Donc tout polynôme annulateur (scindé à racines simples) de M annule A et B.

Ainsi, si M diagonalisable, alors A et B diagonalisables.

b) On peut remarquer que $\operatorname{Sp}(M) = \operatorname{Sp}(A) \cup \operatorname{Sp}(B)$, car $\chi_M = \chi_A \chi_B$.

Remarque: On en déduit que M est diagonalisable ssi le polynôme $\prod_{\lambda \in \operatorname{Sp}(A) \cup \operatorname{Sp}(B)} (X - \lambda)$ annule M.

On note que si $P(A) = O_n$ et $Q(B) = O_p$, alors

$$(PQ)(M) = P(M)Q(M) = \left(\begin{array}{c|c} O & * \\ \hline O & * \end{array}\right) \left(\begin{array}{c|c} * & * \\ \hline O & O \end{array}\right) = O_{n+p}$$

On prend alors $P(X) = \prod_{\lambda \in \operatorname{Sp}(A)} (X - \lambda)$ et $Q(X) = \prod_{\lambda \in \operatorname{Sp}(B)} (X - \lambda)$. On a donc (PQ)(M) = O.

Comme $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$, alors PQ est scindé à racines simples, donc M est diagonalisable.

Soit
$$M = \begin{pmatrix} A & C \\ \hline O & B \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbb{C})$$
, avec $A \in \mathcal{M}_n(\mathbb{C})$ et $B \in \mathcal{M}_p(\mathbb{C})$.

◄ Exo 7: Il existe
$$P = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}$$
 ∈ $GL_2(K)$ tel que $P^{-1} \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ $P = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ diagonale.

On passe alors aux produits par blocs (mêmes types d'opérations lors des produits de matrices).

Par exemple, on a
$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} = \begin{pmatrix} a\alpha + c\lambda & * \\ * & * \end{pmatrix}$$
,

d'où de même
$$\left(\begin{array}{c|c} aA & cA \\ \hline bA & dA \end{array} \right) \left(\begin{array}{c|c} \alpha I & \gamma I \\ \beta I & \delta I \end{array} \right) = \left(\begin{array}{c|c} (a\alpha + c\lambda)A & * \\ * & * \end{array} \right).$$

On en déduit
$$\begin{pmatrix} \alpha I & \gamma I \\ \beta I & \delta I \end{pmatrix}^{-1} \begin{pmatrix} aA & cA \\ bA & dA \end{pmatrix} \begin{pmatrix} \alpha I & \gamma I \\ \beta I & \delta I \end{pmatrix} = \begin{pmatrix} \lambda A & 0 \\ 0 & \mu A \end{pmatrix}.$$

Comme A diagonalisable, alors $\begin{pmatrix} \lambda A & 0 \\ 0 & \mu A \end{pmatrix}$ diagonalisable, donc M diagonalisable.

Remarque: Si on note
$$B = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 et $M = B \otimes A = \begin{pmatrix} aA & cA \\ \hline bA & dA \end{pmatrix}$ le produit tensoriel,

on a
$$(P \otimes A)(Q \otimes A) = (PQ) \otimes A$$
, et en particulier, $(P \otimes A)^{-1} = (P^{-1} \otimes A)$.

Ici, avec
$$P^{-1}BP = D$$
, on a $(P \otimes A)^{-1}(B \otimes A)^{-1}(P \otimes A) = (P^{-1}BP) \otimes A = D \otimes A$.

◄ Exo 8 : a) Posons
$$\chi_A(X) = \prod_{i=1}^r (X - \lambda_i)^{m_i}$$
, donc $\chi_A(B) = \prod_{i=1}^r (B - \lambda_i \operatorname{Id})^{m_i}$.

$$\chi_A(B)$$
 est inversible ssi $\forall i \in [1, r], \det((B - \lambda_i \operatorname{Id}) \neq 0, \operatorname{donc} \operatorname{ssi} \forall i \in [1, r], \lambda_i \notin \operatorname{Sp}(B)$.

Or, les λ_i sont exactement les valeurs propres de A.

b) Si P inversible, $MP = O_n$ implique $M = O_n$.

Récirpoquement, supposons P non inversible. Alors $\operatorname{Im} P \neq \mathbb{C}^n$

On choisit alors M comme un endomorphisme non nul tel que $\operatorname{Ker} M = \operatorname{Im} P$.

Remarque : On peut aussi par changement de base se ramner au cas où $P = \begin{pmatrix} O & O \\ \hline * & * \end{pmatrix}$

et on peut alors prendre $M = \begin{pmatrix} I_r & O \\ \hline O & O \end{pmatrix}$.

c) Par dimension, u est un automorphisme de $\mathcal{M}_n(\mathbb{C})$ ssi u injectif, c'est-à-dire Ker $u = \{0\}$.

Or, supposons $M \in \text{Ker } u$. On a alors AM = MB, donc $A^kM = MB^k$, donc $\chi_A(A)$ M = M $\chi_A(B)$.

Comme $\chi_A(A) = O$, alors $M \chi_A(B) = O$.

Si $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$, alors $\chi_A(B)$ est inversible, donc M = O.

Réciproquement, supposons qu'il existe $\lambda \in \operatorname{Sp}(A) \cap \operatorname{Sp}(B)$.

On veut montrer qu'il existe M non nulle telle que AM = MB.

En fait, AM = MB ssi $(A - \lambda I)M = M(B - \lambda I)$, donc on se ramène au cas où $\lambda = 0$.

Ainsi, on suppose $0 \in \operatorname{Sp}(A) \cap \operatorname{Sp}(B)$, c'est-à-dire A et B non inversibles.

On construit alors M non nulle (par exemple de rang 1) telle que $\operatorname{Im} B \subset \operatorname{Ker} M$ et $\operatorname{Im} M \subset \operatorname{Ker} A$.

Plus précisement, dans des bases \mathcal{B} et \mathcal{C} respectivement adaptées à $\operatorname{Im} B \oplus S$ et $\operatorname{Ker} A \oplus T$, on choisit l'endomorphisme m de sorte que $\operatorname{Mat}_{\mathcal{B},\mathcal{C}} = \left(\begin{array}{c|c} O & P \\ \hline O & O \end{array}\right)$, avec P arbitraire non nulle.

Et alors M est la matrice de m dans les bases canoniques.

◄ Exo 9 : a) On note v et w commutent et $(v \circ w)(M) = AMB$.

Par le binôme; $u^m = (v - w)^m = \sum_{k=0}^m {m \choose k} v^k w^{m-k}$.

Comme v et w sont nilpotentes en dim n, on a $v^n = w^n = O$.

On prend donc m=2n-1. On a alors $\forall k \in [0,m], k \geq n$ ou $n-k \geq n$. Donc $u^m=0$.

Algèbre bilinéaire

◄ Exo 10 : Si p projecteur orthogonal, alors par Pythagore $||x||^2 = ||p(x)||^2 + ||x - p(x)||^2 \ge ||p(x)||^2$.

Réciproquement, soit p projection sur F parallèlement à G, et telle que $\forall x \in E, \|p(x)\| \leq \|x\|$.

Il s'agit de prouver que F et G sont orthogonaux. Soient $y \in F$ et $z \in G$.

On a $\forall t \in \mathbb{R}$, $||ty + z||^2 = ||ty||^2$, car p(ty + z) = ty, donc $\forall t \in \mathbb{R}$, $2\langle y, z \rangle t + ||z||^2 \ge 0$, donc $\langle y, z \rangle = 0$.

 \blacktriangleleft Exo 11 : B est symétrique réelle, donc diagonalisable.

Soit λ une valeur propre de B, et X un vecteur propre de valeur propre λ .

On a
$$(X \mid BX) = \lambda ||X||^2$$
. Or, $(X \mid BX) = (X \mid AX) + (X \mid A^TX) = 2(X \mid AX)$.

Par Cauchy-Schwarz, $|(X \mid AX)| \le ||X|| ||AX|| = ||X||^2$. Comme $X \ne 0$, $\lambda \in [-2, 2]$.

- Exo 11 bis: a) cf TD d'entraînement 05 exo A.
- b) Idée : Tout sev G de H de dimension k est en particulier un sev de E. Donc $\lambda_k \leq \mu_k$.

D'autre part, tout sev G de H de dimension k s'écrit $F \cap H$, où F sev de E de dimension (k+1).

On en déduit $\mu_k \leq \lambda_{k+1}$.

◄ Exo 12 : a) On a $A = ZZ^T$, où $Z = (t_1, ..., t_n) \in \mathbb{R}^n$. Donc $A \in S_n^+(\mathbb{R})$ matrice de Gram.

b) Exemple: $B = \begin{pmatrix} t_1 & t_1 \\ t_1 & t_2 \end{pmatrix} = \begin{pmatrix} t_1 & t_1 \\ t_1 & t_1 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & t_2 - t_1 \end{pmatrix}$ somme de matrices de $S_n^+(\mathbb{R})$.

Une somme de matrices symétriques positives est symétrique positive, avec $(X \mid MX) + (X \mid NX)$.

De façon générale, posons $B(t_1,...,t_n) = (\min(t_i,t_j))_{1 \le i \le n,1 \le j \le n}$.

On a alors
$$B(t_1, ..., t_n) = \begin{pmatrix} t_1 & t_1 & ... & t_1 \\ t_1 & t_2 & ... & t_2 \\ \vdots & \vdots & \ddots & \vdots \\ t_1 & t_2 & ... & t_n \end{pmatrix} = B(\varepsilon_1, ..., \varepsilon_1) + B(0, t_2 - t_1, t_3 - t_1, ..., t_3 - t_1).$$

On peut conclure par récurrence, car si $M \in S_n^+(\mathbb{R}), \left(\begin{array}{c|c} O & O \\ \hline O & M \end{array}\right) \in S_n^+(\mathbb{R}).$

◄ Exo 13 : Idée : $\frac{1}{i+j+1} = \langle f_i, f_j \rangle$, où $\langle f, g \rangle = \int_0^1 f(t)g(t) \ dtetf_j(t) = t^j$. Donc $X^T A X = \sum_{i=0}^n \sum_{j=0}^n x_i x_j \langle f_i, f_j \rangle = \|\sum_{i=0}^n x_j f_j\|^2 \ge 0$.

◄ Exo 14 : a) Dans une BON $\mathcal{B} = (e_1, ..., e_n)$ de diagolisation de $u, \langle x, u(x) \rangle = \sum_{j=1}^n \lambda_j x_j^2$.

Or, tr $u = \sum_{j=1}^{n} \lambda_j = 0$, donc on a $\langle x, u(x) \rangle = 0$ en prenant $x = \sum_{j=1}^{n} e_j$.

b) Supposons $A \in \mathcal{S}_n(\mathbb{R})$ On considère une BON $\mathcal{B} = (e_1, ..., e_n)$, avec $e_1 = x$ défini au a).

On a alors A orthosemblable à $A' = \begin{pmatrix} 0 & * \\ \hline * & C \end{pmatrix}$ symétrique, donc C symétrique de trace nulle.

On conclut par récurrence sur n: par hyp de récurrence, $C = VDV^{-1}$ avec D de diagonale nulle.

On prend alors $U = \begin{pmatrix} 1 & O \\ \hline O & V \end{pmatrix}$ et on obtient $U^{-1}A'U = \begin{pmatrix} 0 & * \\ \hline * & V^{-1}CV \end{pmatrix} = \begin{pmatrix} 0 & * \\ \hline * & D \end{pmatrix}$.

■ Exo 15 : a) Avec le th spectral : $A = U^T DU$ avec D diagonale à coefficients réels strictement positifs.

Donc il suffit de prendre $M=U^TD^{1/2}U$ symétrique définie positive.

b) $A^{-1}B = M^{-2}B = M^{-1}(M^{-1}BM^{-1})M$, donc $A^{-1}B$ est semblable à PBP, où $P = M^{-1}$.

Comme B symétrique réelle, PBP symétrique réelle, donc diagonalisable.

- **◄** Exo 16: a) Avec $A = U^T DU$ avec D diagonale, la matrice $P = D^{-1/2}U$ convient.
- b) Avec les notations de a), on a $P^TAP = I_n$ et $S = P^TBP$ symétrique.

Donc il existe $U \in O_n(\mathbb{R})$ telle que U^TSU diagonale. Avec Q = PU, on a $Q^TAQ = I_n$ et Q^TBQ diagonale.

■ Exo 17: a) On a $A = \alpha J + (1 - \alpha)I_n$.

Or, J symétrique réelle de rang 1 est semblable à $\mathrm{Diag}(0,...,0,p)$, car $\mathrm{tr}\,J=p$.

Donc A diagonalisable de valeurs propres $1-\alpha,...,1-\alpha,(p-1)\alpha+1$.

Donc $\operatorname{rg} J = 1$, n-1 ou n respectivement pour $\alpha = 1$, $\alpha = -\frac{1}{p-1}$ et $\alpha \notin \{1, -\frac{1}{p-1}\}$.

b) Posons $A = (\langle x_i, x_j \rangle)_{1 \le i \le p, 1 \le j \le p}$ matrice de Gram. Comme $\alpha \ne 1$, alors par a), rg A = p - 1 ou p.

Mais $\operatorname{rg} A = \operatorname{rg}(x_1, ..., x_p)$: en effet, si $A = M^T M$, on montre que $\operatorname{rg} A = \operatorname{rg} M$ (même noyau en fait).

Donc $p-1 \le, n$, c'est-à-dire $p \le n-1$.

Dans le cas p = n - 1, on a nécessairement $\alpha = -\frac{1}{p-1} = -\frac{1}{n}$.

◄ Exo 18 : On a A^2 symétrique. Comme $A^2 = -A^T A$, alors $A^2 \in S_n^-(\mathbb{R})$, donc sur \mathbb{C} , Sp(A) ⊂ $i\mathbb{R}$.

On a $A^2 = B$ diagonalisable sur $\mathcal{M}_n(\mathbb{R})$ dans une BON. Les sev propres de B sont stables par A.

On se ramène donc à des équations $a^2 = \lambda \operatorname{Id}$, où a est antisymétrique.

Si λ non nul, on en déduit a diagonalisable (car $X^2 - \lambda$ scindé à racines simples sur \mathbb{C}).

Si $\lambda=0$, alors $a^2=0$. On va prouver que a=0. Il suffit de justifier que la seule matrice antisymétrique vérifiant $A^2=O$ est la matrice nulle. Cela résulte de $0=\operatorname{tr}(A^2)=-\operatorname{tr}(A^TA)=-\|A\|_2^2$.