Opus nº14. Théorème de Lévy. Corrigé.

1) a) La série $\sum |e^{ikt}| P(X=k) = \sum a_k$ converge.

Par le théorème du transfert, on a donc $E(e^{itX}) = \sum_{k=0}^{+\infty} e^{ikt} P(X=k) = \sum_{k=0}^{+\infty} a_k e^{ikt} = G_X(e^{it})$.

b) On a $P(Y = k) = pq^k$, où q = 1 - p. Donc $G_Y(z) = \sum_{k=0}^{+\infty} pq^k z^k = \frac{p}{1 - qz}$.

Donc $\phi_Y(t) = \frac{p}{1 - qe^{it}}$. On en déduit que $\phi_Z(t) = E(e^{it(Y+1)}) = e^{it}E(e^{itY}) = e^{it}\phi_Y(t) = \frac{pe^{it}}{1 - qe^{it}}$.

2) a) On a $\varphi_X(t) = \sum_{k=0}^{+\infty} a_k e^{ikt}$, où $a_k = P(X = k)$.

La série de fonctions $\sum a_k e^{ikt}$ converge normalement sur \mathbb{R} (car $\sup_{t \in \mathbb{R}} \left| a_k e^{ikt} \right| = a_k$ et $\sum_{k=0}^{+\infty} a_k = 1$).

b) Posons $f_k(t) = a_k e^{ikt}$. Les applications f_k sont de classe C^1 , et on a $f'_k(t) = ika_k e^{ikt}$.

On a $\sum_{k=0}^{+\infty} \sup_{t\in\mathbb{R}} |f_k'(t)| = \sum_{k=0}^{+\infty} ka_k = E(X) < +\infty$, alors la série $\sum f_k'$ converge normalement sur \mathbb{R} .

On en déduit que ϕ_X est dérivable sur \mathbb{R} et que $\phi_X'(t) = \sum_{k=0}^{+\infty} f_k'(t) = \sum_{k=0}^{+\infty} ika_k e^{ikt}$.

En particulier, $\phi'_X(0) = \sum_{k=0}^{+\infty} ika_k = iE(X)$.

3) Avec les notations précédentes, on a $\phi_X(t)e^{-ikt} = \sum_{j=0}^{+\infty} a_m e^{i(m-k)t}$

Comme cette série de fonctions converge normalement sur $[0,2\pi]$, alors $\int_0^{2\pi} \phi_X(t)e^{-ikt} dt = \sum_{m=0}^{+\infty} a_m \int_0^{2\pi} e^{i(m-k)t} dt$. On en déduit que $\frac{1}{2\pi} \int_0^{2\pi} \phi_X(t)e^{-ikt} dt = a_k$, car $\forall k \in \mathbb{N}$, $\int_0^{2\pi} e^{i(m-k)t} dt = 2\pi \delta_{m,k}$.

4) Il résulte de 3) que $\forall k \in \mathbb{N}, P(X = k) = P(Y = k)$. Donc X et Y ont même loi.

5) On a
$$P(X_n = k) = \frac{1}{2\pi} \int_0^{2\pi} G_{X_n}(e^{it}) e^{-ikt} dt$$
 et $P(Y = k) = \frac{1}{2\pi} \int_0^{2\pi} G_Y(e^{it}) e^{-ikt} dt$.

On va prouver que $\lim_{n\to+\infty} P(X_n=k) = P(Y=k)$ en utilisant le théorème de convergence dominée.

En effet, on a $\forall n \in \mathbb{N}, \ \forall t \in [0, 2\pi], \ \left| G_{X_n}(e^{it})e^{-ikt} \right| = \left| G_{X_n}(e^{it}) \right| \leq \sum_{k=0}^{+\infty} a_{k,n} = G_{X_n}(1) = 1 = \varphi(t).$

On considère donc comme fonction de domination la fonction constante $\varphi = \widetilde{1}$, qui est bien intégrable sur $[0, 2\pi]$.

Par convergence dominée, on a donc $\lim_{n\to+\infty} P(X_n=k) = P(Y=k)$.

6) a) Pour
$$n$$
 assez grand, $G_{S_n}(z) = \left(1 - \frac{\lambda}{n} + \frac{\lambda}{n}z\right)^n = \left(1 + \frac{\lambda}{n}(z-1)\right)^n$. Donc $\lim_{n \to +\infty} G_n(z) = e^{\lambda(z-1)}$.

En considérant une variable Y qui suit une loi de Poisson $\mathcal{P}(\lambda)$, on a bien $\forall z \in \mathbb{C}$, $\lim_{n \to +\infty} G_{S_n}(z) = G_Y(z)$.

A fortiori, on a $\forall z \in U$, $\lim_{n \to +\infty} G_{S_n}(z) = G_Y(z)$.

Il résulte de 5) que $\forall k \in \mathbb{N}$, $\lim_{n \to +\infty} P(S_n = k) = P(Y = k) = \frac{\lambda^k}{k!} e^{-\lambda}$.

b) On a $G_{S_n}(z) = \left(e^{(\lambda/n)(z-1)}\right)^n = e^{\lambda(z-1)}$, donc S_n suit pour tout n une loi de Poisson de paramètre λ .

Le résultat est ici immédiat.

c) On a
$$G_{S_n}(z) = \left(\frac{1-\lambda/n}{1-(\lambda/n)z}\right)^n$$
. Or, on a $\frac{1-\lambda/n}{1-(\lambda/n)z} = 1 + \frac{\lambda}{n}(z-1) + \mathfrak{o}\left(\frac{1}{n}\right)$.

Donc $\lim_{n\to+\infty} G_{S_n}(z) = \lim_{n\to+\infty} \left(1 + \frac{\lambda}{n}(z-1) + \mathfrak{o}\left(\frac{1}{n}\right)\right)^n = e^{\lambda(z-1)}$, et on conclut comme au a).