Opus n°14 bis. Probabilités

Exercice A. Polynômes de Bernstein et théorème de Stone-Weierstrass

- 1) (\bigstar) a) Soit $Y:\Omega\to\mathbb{R}^+$ une v.a. bornée à valeurs positives. Montrer que $E(Y)\leq \varepsilon+P(Y>\varepsilon)\sup(Y)$.
- b) Soient $\mu \in \mathbb{R}$ et $f: I \to \mathbb{R}$ une fonction continue et bornée. Soit $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires sur Ω à valeurs dans I convergeant en probabilité vers la fonction constante μ , c'est-à-dire

$$\forall \alpha > 0, \quad \lim_{n \to +\infty} P(|X_n - \mu| > \alpha) = 0$$

Montrer que $(f(X_n))_{n\in\mathbb{N}}$ converge en probabilité vers la fonction constante $f(\mu)$, c'est-à-dire

$$\forall \varepsilon > 0, \lim_{n \to +\infty} P(|f(X_n) - f(\mu)| > \varepsilon) = 0$$

Et déduire de a) que $\lim_{n\to+\infty} E(f(X_n)) = f(\mu)$.

 $Indication: \text{Appliquer a)} \text{ à } Y_n = |f(X_n) - f(\mu)|. \text{ Noter que } \sup(Y_n) \leq 2\sup|f| \text{ et que } \lim_{n \to +\infty} P(Y_n > \varepsilon) = 0.$

Dans la suite, pour tout $n \in \mathbb{N}^*$, on considère une v.a. X_n à valeurs dans [0,1] telle que

$$\forall k \in \{0, 1, 2, ..., n\}, \ P\left(X_n = \frac{k}{n}\right) = \binom{n}{k} t^k (1 - t)^{n - k}$$

Autrement dit, X_n suit une loi binomiale $\mathcal{B}(n,t)$ à valeurs dans $\left\{\frac{k}{n},\ k\in\{0,1,2,...,n\}\right\}$.

On a ainsi $\forall n \in \mathbb{N}^*$, $E(X_n) = t$ et $V(X_n) = \frac{t(1-t)}{n}$.

On pose
$$P_n(t) = E(f(X_n)) = \sum_{k=0}^n {n \choose k} t^k (1-t)^{n-k} f\left(\frac{k}{n}\right)$$
.

- 2) Soient $f:[0,1]\to\mathbb{R}$ continue et $t\in[0,1]$. On propose ici une preuve de convergence simple.
- a) Montrer que $\forall n \in \mathbb{N}^*$, $P(|X_n t| > \alpha) \le \frac{t(1 t)}{\alpha^2 n}$. En particulier, on a : $\lim_{n \to +\infty} P(|X_n t| > \alpha) = 0$.
- b) Montrer que $\lim_{n\to+\infty} P_n(t) = f(t)$.
- 3) On propose une preuve de convergence uniforme dans le cas où f est lipschitzienne de rapport L.
- a) Montrer que $|E(f(X_n)) f(t)| \le L |E(|X_n t|) \le L |\sqrt{V(X_n)}| \le \frac{L}{\sqrt{4n}}$.
- b) En déduire que $\lim_{n\to+\infty} \sup_{t\in[0,1]} |P_n(t) f(t)| = 0$.
- 4) Soit $g:[a,b]\to\mathbb{R}$ lipschitzienne de rapport M.

Montrer qu'il existe une suite $(Q_n)_{n\in\mathbb{N}}$ de fonctions polynômes convergeant uniformément vers g sur [a,b], c'est-à-dire telle que $\lim_{n\to+\infty} \sup_{u\in[a,b]} |Q_n(u)-g(u)|=0$.

Indication:

Appliquer 3) à une fonction $f:[0,1]\to\mathbb{R}$ $t\longmapsto g(\alpha+\beta t)$, où α et β sont judicieusement choisies.

Exercice B. Matrices stochastiques et modèle d'Ehrenfest

On note Δ l'ensemble des vecteurs $X=(x_1,...,x_n)\in\mathbb{R}^n$ tels que $\sum_{i=1}^n x_i=1$. On note $\Omega=(1,1,...,1)$.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique ssi $\begin{cases} \text{les coefficients sont positifs, c'est-à-dire } \forall (i,j), \ a_{ij} \geq 0 \\ A\Omega = \Omega, \text{ c'est-à-dire ssi } \forall i, \sum_{j=1}^n a_{ij} = 1. \end{cases}$

- 1) a) Montrer que dans $\mathcal{M}_n(\mathbb{R})$, un produit de deux matrices stochastiques est stochastique.
- b) Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique, il en est de même des puissances A^k , pour tout $k \in \mathbb{N}$.
- 2) a) Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique.

Montrer que toute valeur propre $\lambda \in \mathbb{C}$ de A est de module ≤ 1 , c'est-à-dire vérifie $|\lambda| \leq 1$.

Indication : Considérer X vecteur propre non nul, et la p-ième ligne de $AX = \lambda X$, où $|x_p| = \max_{1 \le i \le p} (|x_i|)$.

b) On suppose de plus $a_{ii} > 0$ pour tout $1 \le i \le n$. Montrer que 1 est la seule valeur propre de A de module 1.

Indication : Considérer à nouveau p tel que $|x_p| = \max_{1 \le i \le p} (|x_i|)$. Et justifier que $|\lambda - a_{pp}| \le \sum_{j \ne p} a_{pj}$.

 $\textbf{3)} \ \textit{Modèle d'Ehrenfest} : \text{Il s'agit d'un modèle utilis\'e dans l'étude des mouvements des molécules} :$

On suppose que M molécules sont contenues dans deux urnes.

On note N_0 la variable aléatoire donnant le nombre de molécules contenues dans la première urne.

A chaque unité de temps, une molécule est choisie au hasard et elle est changée d'urne avec une probabilité $\frac{1}{2}$.

On désigne par N_k le nombre de molécules contenues dans la première urne après k unités de temps.

On considère $X_k = (P(N_k = i))_{0 \le i \le M}$ le vecteur de \mathbb{R}^{M+1} donnant la loi de N_k .

On considérera la matrice $B = \begin{pmatrix} \frac{1}{2} & \frac{1}{2M} & 0 & 0 & 0 \\ \frac{M}{2M} & \frac{1}{2} & \frac{2}{2M} & 0 & 0 \\ 0 & \frac{M-1}{2M} & \frac{1}{2} & \ddots & 0 \\ 0 & 0 & \ddots & \frac{1}{2} & \frac{M}{2M} \\ 0 & 0 & 0 & \frac{1}{2M} & \frac{1}{2} \end{pmatrix} \text{ d'ordre } M+1.$

- a) Exprimer, en justifiant votre réponse, $P(N_{k+1}=i)$ en fonction des $P(N_k=j)$. On en déduit $X_{k+1}=BX_k$.
- b) Montrer que $E(N_{k+1}) = \frac{1}{2} + \left(1 \frac{1}{M}\right) E(N_k)$. En déduire la limite de $E(N_k)$ lorsque k tend vers $+\infty$.
- c) La matrice tB est une matrice stochastique et vérifie les propriétés du 2).

On admet pour la suite que le polynôme caractéristique de B est scindé à racines simples dans $\mathbb{C}[X]$.

On considère le vecteur Z défini par $\forall i \in \{0, 1, ..., M\}, z_i = 2^{-M} {M \choose i}$.

Justifier que Z est l'unique vecteur appartenant à Δ et vérifiant BZ=Z.

d) Montrer que, quelle que soit la valeur de X_0 , on a : $\lim_{k\to+\infty} X_k = Z$. Retrouver le résultat du b).