Opus n°10. Matrices symétriques réelles. Corrigé

1) Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on considère $N(A) = \operatorname{tr}(A^T A) = \sum_{i=1}^n \sum_{j=1}^n (a_{ij})^2$.

a)
$$N(UAV)^2 = \text{tr}(V^T A^T U^T U A V) = \text{tr}(V^T A^T A V) = \text{tr}(A^T A V V^T) = \text{tr}(A^T A) = N(A)^2$$
.

b) Si $A' = \operatorname{Mat}_{\mathcal{B}'} u$, alors $A' = U^T A U$, où $U = P_{\mathcal{B}}^{\mathcal{B}'} \in O_n(\mathbb{R})$, donc par a), N(A') = N(A).

On a
$$\delta = \sum_{i=1}^{n} \sum_{j=1}^{n} \langle f_i, u(e_j) \rangle^2 = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \langle f_i, u(e_j) \rangle^2 \right) = \sum_{j=1}^{n} \|u(e_j)\|^2 = \sum_{j=1}^{n} \|A_j\|^2 = \operatorname{tr}(A^T A).$$

Variante : $\delta = \operatorname{tr}(B^T B)$, où $B = (\langle f_i, u(e_j) \rangle)_{1 \le i \le n, 1 \le j \le n} = U^T A$, où $U = \operatorname{Mat}_{\mathcal{B}} \mathcal{B}' = P_{\mathcal{B}}^{\mathcal{B}'}$.

Par a), $N(B) = N(U^T A) = N(A)$, donc $\delta = \Delta(u)$.

2) Première preuve : Il existe $U \in O_n(\mathbb{R})$ telle que $UAU^T = D = \text{Diag}(\lambda_1, ..., \lambda_n)$.

Par 1), on a donc $N(UAV)^2 = N(D)^2 = \sum_{i=1}^{n} (\lambda_i)^2$.

Seconde preuve : On a $\sum_{i=1}^n \sum_{j=1}^n (a_{ij})^2 = \operatorname{tr}(A^TA) = \operatorname{tr}(A^2).$

Comme A est semblable à $\operatorname{Diag}(\lambda_1,...,\lambda_n)$, alors A^2 est semblable à $\operatorname{Diag}(\lambda_1^2,...,\lambda_n^2)$. D'où le résultat.

3) Par le th spectral, il existe $U \in O_n(\mathbb{R})$ telle que $M = UDU^T$, avec $D = \text{Diag}(\lambda_1, ..., \lambda_r, 0, ..., 0)$.

On a
$$D = \sum_{j=1}^r \lambda_j E_{jj} = \sum_{j=1}^r \lambda_j E_j E_j^{\perp}$$
, donc $M = \sum_{j=1}^r \lambda_j U E_j E_j^{\perp} U^T = \sum_{j=1}^r \lambda_j Z_j Z_j^T$, avec $Z_j = U E_j$.

Comme $U \in O_n(\mathbb{R})$, alors $(Z_1, ..., Z_r)$ est orthonormée (comme image par U d'une famille orthonormée)

4) a) On sait qu'il existe $U \in O_n(\mathbb{R})$ telle que $M = UDU^{-1} = UDU^T$, avec $D = \text{Diag}(\lambda_1, ..., \lambda_n)$.

On prend
$$D_{1/2}=\mathrm{Diag}(\sqrt{\lambda_1},...,\sqrt{\lambda_1})$$
 et $S=UD_{1/2}U^{-1}=UD_{1/2}U^T$

Comme C est diagonale à valeurs propres > 0, la matrice $S = UD_{1/2}U^T$ est symétrique définie positive.

Et on a bien $S^2 = U(D_{1/2})^2 U^{-1} = UDU^{-1} = M$.

b) $M \in S_n^{++}(\mathbb{R})$. On a ainsi $M = S^2$, avec $S \in S_n^{++}(\mathbb{R})$.

MA est semblable à SAS qui est symétrique donc diagonalisable. Donc MA diagonalisable.

c) Cas particulier: Supposons $S^2 = \lambda I_n$, avec $\lambda \geq 0$. b) S est à valeurs propres dans $\{-\sqrt{\lambda}, \sqrt{\lambda}\}$.

Comme S symétrique positive, S admet $\sqrt{\lambda}$ comme unique valeur propre. Comme S diagonalisable, $S = \sqrt{\lambda} \operatorname{Id}$.

Cas général : Supposons $S^2 = M$. Alors $AM = S^3 = MS$, donc M et S commutent.

Donc les sev propres E_{λ} de M sont stables par S. Sur chaque E_{λ} , on est ramené à la situation du b).

D'où l'unique solution S est définie par $S_{|E_{\lambda}} = \sqrt{\lambda} \operatorname{Id}_{|E_{\lambda}}$ pout toute valeur propre λ de S.

5) a) (*Remarque*: Immédiat si on sait que $M = B^T B$, avec $B \in GL_n(\mathbb{R})$. On prend $A = B^{-1}$).

Il existe $U \in O_n(\mathbb{R})$ telle que $U^TMU = D$, avec $D = \text{Diag}(\lambda_1, ..., \lambda_n)$, avec $\lambda_i > 0$.

On prend $A = UD_{1/2}^{-1}$, où $D_{1/2} = \text{Diag}(\sqrt{\lambda_1}, ..., \sqrt{\lambda_n})$. On a alors $U^TMU = D_{1/2}^{-1} D D_{1/2}^{-1} = I_n$.

Variante: On considère le ps $\langle X, Y \rangle = X^T M Y = (X \mid MY)$.

Par le th spectral, il existe une BON $A = (A_1, ..., A_n)$ orthonormée pour \langle , \rangle .

On a donc $\forall (i, j), A_i^T M A_j = \delta_{ij}$, c'est-à-dire $A^T M A = I_n$.

b) La matrice $S = A^T N A$ est symétrique, donc il existe $U \in O_n(\mathbb{R})$ telle que $U^T S U = D$ diagonale.

Avec P = AU, on a donc d'une part $P^TNP = D$ et d'autre part $P^TMP = U^TU = I_n$.

6) a) On a
$$A^T A \in S_n(\mathbb{R})$$
, et $\forall X \neq 0$, $\langle X, AA^T X \rangle = ||AX||^2 > 0$, car $AX \neq 0$.

b) On sait que A^TA est définie positive, donc par 4), il existe $S \in S_n^{++}(\mathbb{R})$ telle que $S^2 = A^TA$.

Posons
$$U = AS^{-1}$$
. On a $U^TU = (S^{-1})^T A^T A S^{-1} = (S^{-1})^T S^2 S^{-1}$.

Or, comme S est symétrique, il en est de même de S^{-1} . En effet, $(S^{-1})^T = (S^T)^{-1} = S^{-1}$.

Donc $U^TU=(S^{-1})S^2S^{-1}=I_n$. D'où $U\in O_n(\mathbb{R})$, et on a bien A=US.

c) On a
$$A^T \in GL_n(\mathbb{R})$$
. Par b), A^T s'écrit SU , donc $A = U^{-1}S$, d'où le résultat, car $U^{-1} \in O_n(\mathbb{R})$.

d) Par c), A = US, avec S symétrique réelle (positive) et $U \in O_n(\mathbb{R})$.

Par le th spectral, $S = V^T DV$ avec D diagonale et V orthogonale.

Donc on obtient A = WDV, avec $W = UV^T \in O_n(\mathbb{R})$ comme produit de matrices orthogonales.