Opus 01. Notions de logique. Corrigé

- 1) a) $\exists x \in \mathbb{R}, |x a| \le \alpha \text{ et } |f(x) f(a)| > \varepsilon$.
- b) i) implique ii) : immédiat.

Supposons ii). Soit $\varepsilon > 0$. Il existe $x \in A$ tel que $x \leq \frac{1}{2}\varepsilon$. Donc a fortiori, on a $x < \varepsilon$.

La propriété ainsi définie est : inf A = 0, c'est-à-dire A contient des réels arbitrairement petits.

2) Si a = da' et b = db', alors a - bq = d(a' - b'q), donc d divise à la fois (a - bq).

La réciproque se déduit en fait de l'implication, en notant que a=(a-bq)+b(-q).

Autrement dit, on applique le sens direct avec a' = a - bq et b' = b et q' = -q.

- 3) a) On prend $f_n(x) = n \sin(x)$: chaque fonction est bornée, mais $\sup |f_n| = n$ dépend de n.
- b) On prend $f_n = \sin(nx)$: chaque fonction est bornée par 1, mais $\sup |f_n'| = n$.
- 4) (unicité) Supposons $a + b\sqrt{2} = c + d\sqrt{2}$, avec $a, b, c, d \in \mathbb{Z}$.

Alors $a-c=\sqrt{2}(d-b)$. Si on avait $d-b\neq 0$, alors on aurait $\sqrt{2}\in\mathbb{Q}$, ce qui est absurde.

Donc d = b et a = c, c'est-à-dire (a, b) = (c, d).

(existence) Par le binôme, $(\sqrt{2}-1)^n = \sum_{k \text{ pair }} \binom{n}{k} 2^{k/2} (-1)^{n-k} + \sqrt{2} \sum_{k \text{ impair }} \binom{n}{k} 2^{(k-1)/2} (-1)^{n-k}$.

Donc $(a_n, b_n) = (\sum_{j=0}^{\lfloor n/2 \rfloor} \binom{n}{2j} 2^j (-1)^{n-2j}, \sum_{j=0}^{\lfloor (n-1)/2 \rfloor} \binom{n}{2j+1} 2^j (-1)^{n-1-2j})$ convient.

Remarque : Une autre preuve de l'existence consiste à raisonner par récurrence :

On a $(a_n + b_n \sqrt{2})(\sqrt{2} - 1) = (2b_n - a_n) + \sqrt{2}(a_n - b_n)$, donc $(a_{n+1}, b_{n+1}) = (2b_n - a_n, a_n - b_n)$ convient.

5) L'application h est bien définie car pour tout $t \in \mathbb{R}$, $\left| \frac{1+it}{1-it} \right| = 1$ et $\frac{1+it}{1-it} \neq -1$.

Pour prouver que h est bijective, on résout $\frac{1+it}{1-it}=z$, avec $z=e^{i\theta}\neq -1$.

On a
$$\frac{1+it}{1-it} = e^{i\theta} \Leftrightarrow 1+it = (1-it)e^{i\theta} \Leftrightarrow t = \frac{e^{i\theta}-1}{i(e^{i\theta}+1)} = \frac{\sin(\theta/2)}{\cos(\theta/2)} = \tan(\theta/2).$$

Ainsi, tout $z \in U \setminus \{-1\}$ admet un unique antécédent (dans \mathbb{R}) par h.

Donc h est bijective et $h^{-1}(e^{i\theta}) = \tan(\theta/2)$.

Remarque: On a $h(t) = \frac{1-t^2}{1+t^2} + i\frac{2t}{1+t^2}$, et $\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) = (\cos\theta, \sin\theta)$, avec $t = \tan(\theta/2)$.

6) a) On étudie la fonction numérique $f: x \longmapsto \frac{\ln x}{x}$ sur $[e, +\infty[$. On a $f'(x) = \frac{1-\ln x}{x^2}$.

Sur $]e, +\infty[$, f' < 0, donc f est une bijection décroissante de $[e, +\infty[$ sur $]0, e^{-1}]$.

b) On considère $g: x \longmapsto f(x) - x$. Alors g est continue, $g(0) \ge 0$ et $g(1) \le 0$.

Donc g admet au moins un zéro, c'est-à-dire f admet au moins un point fixe.

Si f est contractante (c'est-à-dire k-lipschitzienne où k < 1), alors le point fixe est unique.

c) On considérer $f: x \longmapsto x^{-n}P(x)$. L'application f et P ont les mêmes zéros sur $]0, +\infty[$.

On a $f'(x) = na_0x^{-(n+1)} + (n-1)a_1x^{-n} + (n-2)a_2x^{n-2} + \dots + a_{n-1}x^{-2} > 0.$

Donc f est une bijection de $[0, +\infty[$ sur $[-a_0, +\infty[$, et admet donc un unique zéro sur $]0, +\infty[$.

7) Considérons l'endomorphisme $u: \mathbb{R}_n[X] \to \mathbb{R}_n[X] \ P \longmapsto P(X+1) + P(X)$.

u conserve le degré, donc est injectif, et donc $\mathbb{R}_n[X]$ étant de dimension finie, est bijectif.

8) Supposons par l'absurde que f' ne s'annule pas.

Comme f' est continue, f' est de signe constant, donc f est strictement monotone sur $[0, +\infty[$.

Ce qui contredit $f(0) = \lim_{x \to +\infty} f(x)$.

Remarque: On prouve ici l'existence formelle: on ne cherche pas à expliciter la solution.

9) a) Il s'agit de prouver que la suite est bien définie par récurrence :

autrement dit, B_{n-1} étant supposé connu, il s'agit de prouver que B_n est défini de façon unique.

Or, $B'_n = nB_{n-1}$ définit B_n à une constante λ près, et λ est entièrement définie par $\int_0^1 B_n(t)dt = 0$.

En effet, si Q est une primitive polynomiale de nB_{n-1} , alors $B_n = Q + \lambda$, et $\lambda = -\int_0^1 Q(t) dt$.

b) Posons $C_n(X) = (-1)^n B_n(1-X)$.

Il suffit de prouver que $(C_n)_{n\in\mathbb{N}}$ vérifie la $m\hat{e}me$ relation de récurrence que $(B_n)_{n\in\mathbb{N}}$.

Or, on a bien $C_0 = B_0 = 1$ et $C'_n = (-1)^{n-1}B'_n(1-X) = (-1)^{n-1}nB_{n-1}(1-X) = nC_{n-1}$.

Et
$$\int_0^1 C_n(x) dx = (-1)^n \int_0^1 B_n(1-x) dx = (-1)^n \int_0^1 B_n(y) dy = 0.$$

10) a) Le sens réciproque est immédiat.

Supposons que $F \subsetneq G$ et $G \subsetneq F$. Il existe donc $x \in F \setminus G$ et $y \in G \setminus F$.

Posons z = x + y. Si $z \in F$ et $x \in F$, alors $y = z - x \in F$, ce qui contredit la définition de y.

Ainsi, $z \notin F$. De même, $z \notin G$. On en déduit que $F \cup G$ n'est pas stable par +, donc n'est pas un sev.

- b) Si $s = \sqrt{2} + r \in \mathbb{Q}$, alors $\sqrt{2} = s r \in \mathbb{Q}$, d'où une contradiction.
- 11) a) Supposons M = S + A. Alors $M^T = S A$, donc $S = \frac{1}{2}(M + M^T)$ et $A = \frac{1}{2}(M M^T)$.

Réciproquement, avec $S = \frac{1}{2}(M+M^T)$ et $A = \frac{1}{2}(M-M^T)$, on a M = S+A, avec S symétrique et A antisymétrique.

b) (analyse) Supposons (E), c'est-à-dire $M+M^T=(\operatorname{tr} M)^2\ I_n.$

En utilisant le décomposition M = S + A du a), on a donc $2S = (\operatorname{tr} S)^2 I_n$, car $\operatorname{tr} A = 0$.

Donc S est nécessairement de la forme λI_n .

 $(synth\grave{e}se)$ Avec $M=\lambda I_n+A,~M$ vérifie (E) ssi $2\lambda=(n\lambda)^2,$ c'est-à-dire ssi $\lambda=0$ ou $\lambda=2n^{-2}.$

12) Remarque : $s: x \mapsto \pi - x$ vérifie $s \circ s = \text{Id} : s$ est la symétrie par rapport à $\frac{\pi}{2}$.

(analyse) Supposons $y'(x) = y(\pi - x)$.

alors y est C^1 , donc y' est C^1 , donc y est C^2 , et $y''(x) = -y'(\pi - x) = y(x)$.

Donc $y(x) = a\cos x + b\sin x$.

 $(synth\grave{e}se)\ y(x) = a\cos x + b\sin x\ \text{v\'erifie}\ (E)\ ssi\ -a\sin x + b\cos x = -a\cos x + b\sin x.$

Comme (cos, sin) est libre, y vérifie (E) ssi b = -a.

Donc les solutions sont les $y(x) = a(\cos x - \sin x) = A\cos(x + \frac{\pi}{4})$, avec $a \in \mathbb{R}$ et $A = a\sqrt{2}$.

13) $e^{ix} + e^{iy} + e^{iz} = 0$ ssi $\frac{1}{3}(a+b+c) = 0$, où $a = e^{ix}$ est l'affixe de A.

Donc $e^{ix} + e^{iy} + e^{iz} = 0$ ssi le centre du triangle ABC est O (centre du cercle circonscrit).

D'où la CNS : médiatrices = médianes, c'est-à-dire ABC équilatéral.