Interrogation n°23 bis. Corrigé

Problème

- 1) a) Par comparaison, les fonctions considérées sont intégrables en $+\infty$ et en $+\infty$, car $O_{+\infty}(1/x^2)$.
- Avec le changement de variable affine y = -x, $\int_{-\infty}^{0} xG(x) dx = -\int_{0}^{+\infty} xG(x) dx$, donc $\int_{-\infty}^{+\infty} xG(x) dx = 0$.

Remarque : On utilise en fait l'imparité de $x \longmapsto xG(x)$.

- Une primitive de $x \exp\left(-\frac{x^2}{2}\right)$ est $\exp\left(-\frac{x^2}{2}\right)$. Donc par IPP, on a : $\int_{-\infty}^{+\infty} x^2 G(x) \ dx = \frac{1}{\sqrt{2\pi}} \left[x \exp\left(-\frac{x^2}{2}\right)\right]_{-\infty}^{+\infty} + \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2}\right) \ dx = \int_{-\infty}^{+\infty} G(x) \ dx = 1.$

Remarque : $\int_0^{+\infty} x^p \exp(-x^2/2) dx$ peut s'exprimer à l'aide de la fonction Γ avec le changement de variable bijectif $x = \sqrt{2y}$: on obtient $\sqrt{2}^{p+1} \int_0^{+\infty} y^{(p-1)/2} \exp(-y) dy = \sqrt{2}^{p+1} \Gamma((p+1)/2)$.

b) On a $G_{\lambda}(x) = \frac{1}{\sqrt{\lambda}} G\left(\frac{x}{\sqrt{\lambda}}\right)$, donc $\int_{-\infty}^{+\infty} G_{\lambda}(x) dx = \int_{-\infty}^{+\infty} G(y) dy = 1$ avec $y = \frac{x}{\sqrt{\lambda}}$.

De même, $\int_{-\infty}^{+\infty} x^2 G_{\lambda}(x) dx = \lambda \int_{-\infty}^{+\infty} y^2 G(y) dy = \lambda$. Remarque : Ainsi, la variance de la loi gaussienne G_{λ} vaut λ .

- 2) Remarque : La fonction f est bornée au voisinage de $+\infty$ et $+\infty$, car converge. Et f est bornée sur tout segment. Donc f est bornée sur \mathbb{R} . Posons $M = \sup_{\mathbb{R}} |f|$.
- a) On fixe $x \in \mathbb{R}$. On pose F(t) = f(x-t)p(t)

On a F continue et $F(t) = O_{+\infty}(p(t))$ et $F(t) = O_{-\infty}(p(t))$. Comme p est intégrable, F est intégrable.

- Montrons que (f * p) est continue.

Première preuve (par les th sur les intégrales paramétrées) : Posons F(x,t) = f(x-t)p(t).

On a $\forall t \in \mathbb{R}, x \longmapsto F(x,t)$ est continue et $\forall x \in \mathbb{R}, F(x,t) \leq ||f||_{\infty} p(t) = \varphi(t)$, et φ intégrable sur \mathbb{R} .

Seconde preuve : ici, on peut aussi déduire la continuité de l'uniforme continuité.

Soit $\varepsilon > 0$. Par uniforme continuité, il existe $\alpha > 0$ tel que $\forall (x,y) \in \mathbb{R}^2, |x-y| < \alpha \Rightarrow |f(x)-f(y)| < \varepsilon$.

Soit $(x,y) \in \mathbb{R}^2$ tels que $|x-y| < \alpha$. On a donc $\forall t \in \mathbb{R}, |f(x-t) - f(y-t)| < \varepsilon$.

D'où $|(f*p)(x) - (f*p)(y)| \le \int_{-\infty}^{+\infty} \varepsilon p(t) dt = \varepsilon$. A fortiori, (f*p) est donc continue en tout point.

b) Posons $F_x(t)=f(x-t)p(t)$. On a $\forall t\in\mathbb{R},\,\lim_{x\to+\infty}F_x(t)=0$ car $\lim_{t\to\infty}f=0$.

D'autre part, $|F_x(t)| \leq \|f\|_{\infty} \ p(t) = \varphi(t)$, et φ intégrable sur \mathbb{R} .

Donc par convergence dominée (pour un paramètre continu), $\lim_{x\to+\infty} (f*p)(x) = f(x)$.

3) a) Remarque : T_p est bien définie par 2) : si $f \in E$, alors $(f * p) \in E$. Et T_p est bien linéaire.

On a $|(f * p)(x)| \le \int_{-\infty}^{+\infty} ||f||_{\infty} p(t) dt = ||f||_{\infty}$. Donc $||T_p(f)||_{\infty} \le ||f||_{\infty}$.

b) Par récurrence sur $n \in \mathbb{N}$. La propriété est immédiate pour n = 0 car $T_p^0(f) = f$.

Supposons la propriété vraie au rang $n \geq 0$.

On a
$$T_p^{n+1}(f) - T_q^{n+1}(f) = T_p^n(T_p(f)) - T_p^n(T_q(f)) + T_p^n(T_q(f)) - T_q^n(T_q(f))$$
.

Or, $T_p^n(T_p(f)) - T_p^n(T_q(f)) = T_p^n(T_p(f) - T_q(f)).$

Par a) $||T^n(T(f) - T(f))|| < ||T(f) - T(f)||$ an composant n fois l'inégalité du a)

 $\text{Donc } \|T_p^n(T_q(f)) - T_q^n(T_p(f))\|_{\infty} = \|T_q(T_p^n(f) - T_q^n(f))\| \le \|T_p^n(f) - T_q^n(f)\|_{\infty} \text{ par a}.$

Donc $\|T_p^n(T_q(f)) - T_q^n(T_p(f))\|_{\infty} \le n \|T_p(f) - T_q(f)\|$ par a) et hyp de récurrence.

On déduit de l'inégalité triangulaire que $\|T_p^{n+1}(f) - T_q^{n+1}(f)\|_{\infty} \le (n+1) \|T_p(f) - T_q(f)\|$.

Autre preuve : Comme $T_p \circ T_q = T_q \circ T_p$, on a $(T_p)^n - (T_q)^n = \left(\sum_{k=0}^{n-1} (T_p)^k (T_q)^{n-1-k}\right) \circ (T_p - T_q)$.

 $\text{Par a), les } (T_p)^k (T_q)^{n-1-k} \text{ sont 1-lipschitziennes, donc } \left\| (T_p^{n+1} - T_q^{n+1})(f) \right\|_\infty \leq \left\| (T_p - T_q)(f) \right\|_\infty.$

Remarque culturelle : $T_p \circ T_q = T_q \circ T_p$ résulte en fait de Fubini (pour les intégralesintégrables) :

$$(T_p \circ T_q)(f) = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-t-s)p(s)q(t) \right) \ ds \ dt = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x-t-s)q(s)p(t) \right) \ dt \ ds = (T_q \circ T_p)(f).$$

4) a) On a
$$(f * p_a)(x) = \int_{-\infty}^{+\infty} f(x-t)p_a(t) dt = \int_{-\infty}^{+\infty} f(x-u/a)p(u) du$$
, avec $t = u/a$.

Posons $H_a(u) = f(x - u/a)p(u)$. On a $\forall u \in \mathbb{R}$, $\lim_{a \to +\infty} H_a(u) = f(x)p(u)$ et $|H_a(u)| \le ||f||_{\infty} p(u) = \varphi(u)$.

Comme φ est intégrable sur \mathbb{R} , on a par cv dominée, $\lim_{\lambda\to 0}\int_{-\infty}^{+\infty}H_a(u)\ du=\int_{-\infty}^{+\infty}f(x)p(u)du=f(x)$.

- b) $\int_{|t| < r} p_a(t) dt = 2 \int_r^{+\infty} ap(at) dt = 2 \int_{ar}^{+\infty} p(t) dt \to 0$ lorsque a tend vers $+\infty$, car on a alors $ar \to +\infty$.
- c) On a $\forall x, (f * p_a)(x) f(x) = \int_{-\infty}^{+\infty} |f(x-t) f(x)| p_a(t) dt$. Posons $M = ||f||_{\infty}$.

On fixe $\varepsilon > 0$. Il existe r > 0 tel que $\forall (x,y) \in \mathbb{R}^2$, $|x-y| < r \Rightarrow |f(x) - f(y)| < \varepsilon$.

On a
$$\forall x$$
, $|(f * p_a)(x) - f(x)| \le \varepsilon \int_{|t| < r} p_a(t) dt + 2M \int_{|t| > r} p_a(t) dt \le \varepsilon + 2M \int_{|t| > r} p_a(t) dt$.

Par b), $M \int_{|t| \geq r} p_a(t) dt$. $\leq \varepsilon$ pour a assez grand. Donc $\sup_{x \in \mathbb{R}} |(f * p_a)(x) - f(x)| \leq 2\varepsilon$ pour a assez grand.

Donc $\lim_{a\to +\infty}\sup_{\mathbb{R}}|(f*p_a)-f|=0$, c'est-à-dire $(f*p_a)$ cv uniformément vers f lorsque $a\to +\infty$. Exercice A. Loi

faible et loi forte des grands nombres

- 1) Résulte de $E(X^2)^2 \le E(X^4)$: la variable X^2 est de moment d'ordre 2 fini, donc d'espérance finie.
- **2)** On a $E(Y_n) = 0$, donc $E(Y_n^2) = V(Y_n) = \frac{1}{n^2} \sum_{k=1}^n V(X_n) = \frac{Kn}{n^2} = \frac{K}{n}$.

Par l'inégalité de Tchebychev : $P(|Y_n| \le \varepsilon) \le \frac{V(Y_n)}{\varepsilon^2} = \frac{K}{n\varepsilon^2}$.

- 3) a) Pour construire un tel quadruplet:
- On choisit la paire $\{\alpha, \beta\}$, avec $\alpha < \beta$, des deux valeurs prises par (i, j, k, l). Il y a $\binom{n}{2}$ choix.
- Puis on choisit la position des deux éléments valant α : il y a $\binom{4}{2}$ choix
- Il reste un seul choix pour les autres éléments, qui valent β .

Donc
$$N = \binom{n}{2} \binom{4}{2} = \frac{1}{2}n(n-1) \times 6 = 3n(n-1).$$

Par exemple, lorsque n=2, il y a $6=\binom{4}{2}$ quadruplets (1,1,2,2), (1,2,1,2), etc ...

- b) On a $Y_n^4 = \frac{1}{n^4} \sum_{i,j,k,l} X_i X_j X_k X_l$. Mais $E(X_i X_j X_k X_l) = 0$ sauf (éventuellement) des deux cas :
- les i, j, k, l sont tous égaux : il y a n choix.
- les i, j, k, l se répartissent en deux paires distinctes de terme égaux : il y a N choix.

Donc
$$E(Y_n^4) = \frac{nK}{n^4} + \frac{N}{n^4}L = \frac{K}{n^3} + \frac{3(n-1)}{2n^3}L$$
, donc $E(Y_n^4)$ est en $O(\frac{1}{n^3})$.

c) On a
$$P(|Y_n| \ge \varepsilon) = P(Y_n^4 \ge \varepsilon^4)$$
.

 Y_n^4 est une variable positive, donc par l'inégalité de Markov, $P(Y_n^4 \ge \varepsilon^4) \le \frac{E(Y_n^4)}{\varepsilon^2} = O(\frac{1}{n^2})$ par b).

d) On pose $B_s: |Y_s| \ge \varepsilon$ pour n assez grand. On a $B_s = |Y_s| \ge \varepsilon$, $(|Y_s| \ge \varepsilon)$.

Par c), on a $\sum_{n\geq m} P(|Y_n| \geq \varepsilon)$ converge, donc $\lim_{m\to +\infty} \sum_{n\geq m} P(|Y_n| \geq \varepsilon)) = 0$.

Par continuité décroissante, on a donc $\lim_{n\to+\infty} P\left(\bigcup_{n\geq m}(|Y_n|\geq \varepsilon)\right)=0.$

Par continuité croissante, on a donc $P(\overline{B_{\varepsilon}}) = 0$, donc $\lim_{m \to +\infty} P(B_{\varepsilon}) = 1$.

e) On a $\forall k \in \mathbb{N}^*$, $|Y_n(\omega)| \leq \frac{1}{k}$ presque sûrement.

Par continuité croissante, on a donc $\lim_{n\to+\infty} Y_n(\omega) = 0$ presque sûrement.

Remarque : En effet, $(\lim_{n\to+\infty} Y_n(\omega) = 0) = \bigcap_{k\geq 1} \left(|Y_n(\omega)| \leq \frac{1}{k} \right)$.

Exercice B

- 1) a) K est bornée car inclus dans $[a, b]^2$.
- K est fermée : soit $(x_n, y_n)_{n \in \mathbb{N}}$ une suite d'éléments de K convergeant vers $(x, y) \in \mathbb{R}^2$..

On a donc $\forall n \in \mathbb{N}, x_n \in [a, b], y_n \in [a, b]$ et $|f(x_n) - f(y_n)| \ge \varepsilon$.

Alors x et $y \in [a,b]$, et $|f(x)-f(y)| \ge \varepsilon$ par continuité de f et par passage à la limite des inégalités larges.

b) L'application ϕ est continue par caractérisation séquentielle.

D'autre part, pour $(x,y) \in K$, on a nécessairement $x \neq y$, donc $\phi(x,y) > 0$.

Ainsi, ϕ est minorée sur le compact K par un réel strictement positif α . (on prend α arbitraire si K est vide).

Donc $\forall (x,y) \in K, |x-y| \ge \alpha$. Par contraposition, $\forall (x,y) \in [a,b]^2, |x-y| < \alpha \Rightarrow |f(x)-f(y)| < \varepsilon$.

c) Soit $\varepsilon > 0$. Par b), il existe $\alpha > 0$ tel que $\forall (x,y) \in [a,b]^2$, $|x-y| < \alpha \Rightarrow |f(x) - f(y)| < \varepsilon$.

On considère $n \in \mathbb{N}^*$ tel que $\frac{b-a}{n} \leq \alpha$, et on pose $\forall k \in \llbracket 0, n \rrbracket, \, x_k = a+k \, \frac{b-a}{n}.$

On définit φ par $\forall k \in [0, n]$, $\varphi(x_k) = f(x_k)$ et $\forall k \in [1, n]$, $\forall x \in]x_{k-1}, x_k[$, $\varphi(x) = f(x_k)$.

On a bien $\forall x \in]x_{k-1}, x_k[, |f(x) - \varphi(x)| = |f(x) - f(x_k)| \le \varepsilon, \text{ car } x - x_k \le \frac{b-a}{n} \le \alpha.$

2) a) Comme $\lim_{+\infty} f = 0$, il existe b tel que $\forall x \geq b$, $|f(x)| < \frac{1}{2}\varepsilon$.

Donc $\forall (x,y) \in \mathbb{R}^2$, $(x \ge b \text{ et } y \ge b) \Rightarrow |f(x) - f(y)| < \varepsilon$.

b) De même, il existe a tel que $\forall (x,y), (x \leq a \text{ et } y \leq a) \Rightarrow |f(x) - f(y)| < \varepsilon$.

Par 1) appliqué à [a-1,b+1], il existe $\alpha>0$ tel que $\forall (x,y)\in [a-1,b+1]^2, \ |x-y|<\alpha \Rightarrow |f(x)-f(y)|<\varepsilon.$

Considérons alors $(x, y) \in \mathbb{R}^2$ tel que $|x - y| < \min(1, \alpha)$.

On a en particulier |x-y| < 1. Alors $(x \text{ et } y \le a)$ ou $(x \text{ et } y \ge b)$ ou $(x \text{ et } y \in [a-1,b+1])$.

Dans les trois cas, $|f(x) - f(y)| < \varepsilon$. Ce qui donne la propriété demandée.