Interrogation n°21. Barème sur 26 pts

Exercice A. Matrices orthogonalement semblables (inspiré Centrale PC 2013)

On dit que deux matrices de $\mathcal{M}_n(\mathbb{R})$ sont orthosemblables si il existe $U \in O_n(\mathbb{R})$ telles que $B = U^{-1}AU$.

On dit que ces matrices sont directement orthosemblables si il existe $U \in O_n^+(\mathbb{R})$ telles que $B = U^{-1}AU$.

- 1) [0.5 pt] Soit $\alpha \in \mathbb{R}$ fixé. Quelles sont les matrices orthosemblables à αI_n ?
- 2) [2 pts] Soit $S \in \mathcal{S}_n(\mathbb{R})$ une matrice symétrique réelle. Caractériser les matrices orthosemblables à S.

3) a) [2 pts] On pose
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
 et $D = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}$.

Expliciter une matrice $U \in O_2(\mathbb{R})$ telle que $UAU^{-1} = D$.

- b) [2 pts] Montrer que $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ et $\begin{pmatrix} 3 & 2 \\ -1 & 0 \end{pmatrix}$ sont semblables mais ne sont pas orthosemblables.
- **4)** a) [1.5 pt] (\bigstar) Montrer que toute matrice $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ est orthosemblable à sa transposée.
- b) [1.5 pt] Soit $A \in \mathcal{M}_2(\mathbb{R})$.

Montrer que A est directement orthosemblable à sa transposée ssi A est symétrique.

Indication: Utiliser le fait que la matrice antisymétrique $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est une matrice de rotation et donc commute avec toute matrice de $O_2^+(\mathbb{R})$.

Exercice B. Matrices symétriques aléatoires (concours spécial 2022 ENS Lyon)

On munit \mathbb{R}^n de la norme euclidienne canonique $||x||_2$ et on pose $S=\{x\in\mathbb{R}^r\mid ||x||_2=1\}.$

Pour $A = (a_{ij})_{1 \leq i \leq n, 1 \leq j \leq n} \in \mathcal{M}_2(\mathbb{R})$, on pose

$$N_2(A) = \sup_{x \in \mathbb{R}^n \setminus \{0\}} \frac{\|Ax\|_2}{\|x\|_2} = \sup_{x \in S} \|Ax\|_2 \quad \text{et} \quad N_{\infty}(A) = \sup_{1 \le i \le n, 1 \le j \le n} |a_{ij}|$$

- 1) Soit $A \in S_n(\mathbb{R})$ une matrice réelle symétrique.
- a) [2 pts] Montrer que $N_2(A) = \sup_{\lambda \in \operatorname{Sp}(A)} |\lambda|$
- b) [2 pts] On suppose $N_{\infty}(A) \leq 1$. Montrer que $N_2(A) \leq n$.
- c) [2 pts] (\bigstar) Caractériser les matrices telles que $N_{\infty}(A) \leq 1$ et $N_2(A) = n$.

Dans la suite, on suppose que $A = (A_{ij})_{1 \le i \le n, 1 \le j \le n}$ est une matrice symétrique réelle dont les coefficients supérieurs $(A_{ij})_{1 \le i \le j \le n}$ forment une famille de variables aléatoires mutuellement indépendantes définies sur un espace probabilisé (Ω, P) de même loi de Rademacher :

$$\forall (i,j) \in [1,n]^2, \quad P(A_{ij}=-1) = P(A_{ij}=1) = \frac{1}{2}$$

Le but des questions suivantes est de montrer que $N_2(A) =_{n=+\infty} O(\sqrt{n})$ avec une grande probabilité, ce qui améliore fortement le résultat de la question 1) b).

2) [1 pt] En utilisant les DSE, montrer que $\forall t \in \mathbb{R}$, $\operatorname{ch}(t) \leq \exp\left(\frac{t^2}{2}\right)$.

- 3) On fixe un vecteur $x = (x_1, ..., x_n) \in \mathbb{R}^n$ et un réel $u \ge 0$.
- a) [0.5 pt] Soient Y une variable aléatoire de Rademacher et v un réel. Expliciter $E(\exp(vY))$.
- b) [2 pts] Exprimer $E(\exp(u \ x^T A x))$ en fonction de u, des x_j , des A_{ij} et de cosinus hyperboliques.
- c) [1 pt] En déduire avec soin que $E(\exp(u \ x^T A x)) \le \exp\left(u^2 \|x\|_2^4\right)$.
- 4) On fixe un vecteur $x = (x_1, ..., x_n) \in \mathbb{R}^n$.
- a) [1.5 pt] Montrer que pour tout u > 0 et tout $\alpha > 0$, $P(x^T A x \ge \alpha \sqrt{n}) \le \exp\left(u^2 \|x\|_2^4 u\alpha \sqrt{n}\right)$.
- b) [0.5 pt] En déduire que pour tout $\alpha > 0$, on a

$$P(x^T A x \ge \alpha \sqrt{n}) \le \exp\left(-\frac{\alpha^2 n}{4 \|x\|_2^4}\right)$$

5) [1 pt] On fixe un vecteur $x = (x_1, ..., x_n) \in \mathbb{R}^n$. En utilisant 4) b), montrer que pour tout $\alpha > 0$, on a

$$P(|x^T Ax| \ge \alpha \sqrt{n}) \le 2 \exp\left(-\frac{\alpha^2 n}{4 \|x\|_2^4}\right)$$

Afin de traiter la dernière question de ce problème, on admet qu'il existe un entier $N \leq 7^n$ et des vecteurs $w_1, ..., w_N \in S$ tels que

$$\forall x \in S, \exists k \in [1, N], \|x - w_k\|_2 \le \frac{1}{3}$$

- **6)** On pose $M_A = \max_{1 \le k \le N} |w_k^T A w_k|$.
- a) [1 pt] Montrer que $\forall x \in S, |x^T Ax| \leq \frac{7}{9} N_2(A) + M_A$.

Indication: Poser $x = w_k + y$.

- b) [1 pt] En déduire que $\forall t \in \mathbb{R}^+, P(N_2(A) \ge t) \le P\left(M_A \ge \frac{2}{9}t\right)$.
- c) [1 pt] A l'aide des questions précédentes, déterminer un réel $\alpha > 0$ indépendant de n tel que

$$\lim_{n \to +\infty} P(N_2(A) \ge \alpha \sqrt{n}) = 0$$