Interrogation n°10. Barème sur 24.5 pts

1) [2 pts] Soit E un espace euclidien muni d'un produit scalaire \langle , \rangle .

On note $S = \{y \in E \mid ||y|| = 1\}$ la sphère unité. Soient $x \in E$ et $u \in O(E)$ une isométrie. Calculer

$$m = \sup_{y \in S} \langle x, u(y) \rangle$$

2) [2 pts] Soit E un espace préhilbertien, c'est-à-dire un \mathbb{R} -ev muni d'un produit scalaire \langle , \rangle .

Soient $x \in E$ et $(e_1, ..., e_n)$ une famille orthonormée de E.

Montrer que $\sum_{k=1}^{n} \langle x, e_k \rangle^2 \leq ||x||^2$, avec égalité ssi $x \in F = \text{Vect}(e_1, ..., e_n)$.

Remarque: On pourra utiliser sans justification toute propriété du cours.

- 3) [2 pts] Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que les assertions suivantes sont équivalentes :
- (i) Il existe $A \in GL_n(\mathbb{R})$ telle que $M = A^T A$
- (ii) Il existe un espace euclidien E de dimension n et une base $(x_1,...,x_n)$ dans E telle que

$$M = (\langle x_i, x_j \rangle)_{1 \le i \le n, 1 \le j \le n}$$

4) [2 pts] Soit $A \in O_n(\mathbb{R})$ une matrice orthogonale et triangulaire supérieure.

On veut montrer de deux façons que A est diagonale de la forme $(\pm E_1,...,\pm E_n)$:

- a) On sait que A^{-1} est triangulaire supérieure. En déduire la propriété.
- b) Montrer que $\operatorname{Sp}(A) \subset \{-1,1\}$. En déduire une deuxième preuve.
- 5) [2 pts] On note E l'ensemble des fonctions continues f sur $[0, +\infty[$ telles que la fonction $t \longmapsto f(t)^2 \exp(-t)$ est intégrable sur $[0, +\infty[$.
- a) Montrer que si f et $g \in E$, alors $t \longmapsto f(t)g(t) \exp(-t)$ est intégrable.

On en déduit aisément (admis ici) que E est un sous-espace vectoriel de $C^0([0,+\infty[,\mathbb{R})$.

b) Montrer qu'il existe un unique polynôme unitaire $P \in \mathbb{R}_n[X]$ vérifiant la propriété (\mathcal{E}) :

$$(\mathcal{E}): \forall k \in [0, n-1], \int_{0}^{+\infty} P(t) t^{k} e^{-t} dt = 0$$

Remarques: Un polynôme unitaire est un polynôme non nul de coefficient dominant 1.

On pourra faire intervenir un produit scalaire qu'on définiera sans justification

6) Soit E un espace euclidien de dimension n muni d'un produit scalaire \langle , \rangle .

Soient x, y, z trois vecteurs unitaires tels que $\langle x, y \rangle$, $\langle x, z \rangle$ et $\langle y, z \rangle$ sont tous les trois strictement négatifs.

On note p la projection orthogonale sur l'hyperplan $H = z^{\perp}$ et q la projection orthogonale sur $\mathbb{R}z$.

- a) [1 pt] Expliciter sans justification q(x) et d(x, H) en fonction de x et z.
- b) [1 pt] Montrer que $\langle p(x), p(y) \rangle < 0$.
- c) Question supplémentaire hors-interrogation

Une famille $(x_1,...,x_p)$ est obtusangle ssi $\forall i \neq j, \langle x_i,x_j \rangle < 0$. Montrer que dans ce cas, $p \leq n+1$.

7) Soit E euclidien, et F un sev de E de dimension p.

On considère une base orthonormée $(f_1,...,f_{n-p})$ du supplémentaire orthogonal F^{\perp} .

- a) [0.5 pt] Soit $x \in E$. Exprimer sans justification $d(x, F)^2$ en fonction des $\langle f_j, x \rangle$.
- b) [2 pts] Soit $(e_1, ..., e_n)$ une base orthonormée de E. Montrer que $\sum_{i=1}^n d(e_i, F)^2 = n p$.

8) [2 pts] On considère la matrice
$$A = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} \in \mathcal{M}_4(\mathbb{R}).$$

Montrer que A est la matrice d'une symétrie orthogonale par rapport à un sev F à préciser.

9) [2 pts] On munit $\mathcal{M}_n(\mathbb{R})$ du produit scalaire canonique $\langle A, B \rangle = \operatorname{tr}(A^T B)$. On a $||A||^2 = \operatorname{tr}(A^T A)$.

Soit $D = \text{Diag}(\lambda_1, ..., \lambda_n)$ une matrice réelle diagonale. Les deux questions sont indépendantes

- a) Soit $U = (u_{ij})_{1 \le i \le n, 1 \le j \le n} \in O_n(\mathbb{R})$. Montrer que $||U D||^2 = \sum_{j=1}^n \lambda_j^2 2\operatorname{tr}(DU) + n$.
- b) Montrer que $\forall U \in O_n(\mathbb{R})$, $\operatorname{tr}(DU) \leq \sum_{i=1}^n |\lambda_j|$, et donner $U \in O_n(\mathbb{R})$ pour laquelle il y a égalité.
- 10) Soit $(a_1, ..., a_n)$ une base de E euclidien.
- a) [1 pt] On définit $V(a_1,...,a_n) = |\det_{\mathcal{B}}(a_1,...,a_n)|$, où \mathcal{B} est une base orthonormée de E.

Montrer que $|\det_{\mathcal{B}}(a_1,...,a_n)|$ ne dépend pas du choix de \mathcal{B} , ce qui valide la définition.

b) [1 pt] On note $(b_1,...,b_n)$ la base orthogonale obtenue par le procédé de Gram-Schmidt.

Autrement dit, b_k est le projeté orthogonal de a_k sur $\operatorname{Vect}(a_1,...,a_k)^{\perp}$.

Exprimer sans justification le vecteur b_k en fonction de a_k et des b_j pour j < k.

- c) [1 pt] Montrer que $\det_{\mathcal{B}}(a_1,...,a_n) = \det_{\mathcal{B}}(b_1,...,b_n)$.
- d) [1 pt] En déduire l'inégalité d'Hadamard : $V(a_1,...,a_n) = ||b_1|| \dots ||b_n|| \le ||a_1|| \dots ||a_n||$.
- 11) Soient a et b deux vecteurs distincts et de même norme dans E euclidien muni du ps \langle , \rangle .
- a) [0 pt] Montrer que a + b et a b sont orthogonaux.
- b) [1 pt] Soit s une réflexion, c'est-à-dire une symétrie orthogonale par rapport à un hyperplan H.

On suppose que s(a) = b. Montrer que $H = (a - b)^{\perp}$.

c) [1 pt] Réciproquement, on suppose que s est la réflexion d'hyperplan $H=(a-b)^{\perp}$.

Montrer que s(a) = b.

12) Question supplémentaire hors-interrogation

On considère E le \mathbb{R} -espace vectoriel des fonctions continues sur [0,1].

Soit $\omega \in E$. Pour f et $g \in E$, on pose $\langle f, g \rangle = \int_0^1 f(t) \ g(t) \ \omega(t) \ dt$.

Donner sans justification une CNS sur ω pour que \langle , \rangle soit un produit scalaire.