Interrogation n°6. Barème sur 24.5 pts

On sait que pour tout $\alpha > 0$, il existe $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha - 1} e^{-t} dt$.

1) [1 pt] Soient $\theta \in \mathbb{R}$ et $(a_n)_{n \in \mathbb{N}}$ une suite réelle décroissante et positive.

Montrer que $\sum e^{in\theta}(a_{n+1}-a_n)$ converge.

- 2) a) [1 pt] Soient A et $B \in \mathcal{M}_n(K)$. Montrer que $\operatorname{rg}(AB) \leq \min(\operatorname{rg} A, \operatorname{rg} B)$.
- b) [1.5 pt] Soit $M \in \mathcal{M}_n(K)$. Montrer que les assertions suivantes sont équivalentes :
- (i) $\operatorname{rg} M \leq 1$
- (ii) il existe deux vecteurs X et $Y \in K^n$ tels que $M = XY^T$, c'est-à-dire $M = (x_i y_j)_{1 \le i \le n, 1 \le j \le n}$.
- 3) a) [1 pt] Montrer (à partir de la définition initiale des familles libres) que si une famille $(x_1, ..., x_p)$ est liée, alors un des vecteurs est combinaison linéaire des suivants.
- b) [1.5 pt] On considère l'espace vectoriel $E = \mathbb{R}_n[X]$. Soit a et b deux réels distincts.

On pose $P_k = (X - a)^k (X - b)^{n-k}$. Montrer que $(P_0, P_1, ..., P_n)$ est une base de E.

4) [1.5 pt] Soit un espace vectoriel $E = F \oplus G$ et deux applications linéaires $v : F \to E'$ et $w : G \to E'$.

On note p la projection sur F parallèlement à G, et q la projection sur G parallèlement à F.

Pour $u: E \to E'$ linéaire, on note $u_{|F}$ l'application linéaire de F dans E' définie par $\forall y \in F, u_{|F}(y) = u(y)$.

a) Expliciter sans justification une application linéaire $u: E \to E'$ telle que $u_{|F} = v$ et $u_{|G} = w$.

On exprimera u en fonction de p, q, v et w.

b) On considère la matrice $A = \operatorname{Mat}_{\mathcal{B},\mathcal{C}} u$ où $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ base adaptée à $E = F \oplus G$ et \mathcal{C} base de E'.

Préciser sans justification le lien entre A et les applications linéaires v et w.

5) [2.5 pts] Soit ω :]0, $+\infty$ [$\to \mathbb{R}$ une fonction intégrable sur]0, 1] et bornée sur [1, $+\infty$ [.

On considère $\forall a > 0$, $g(a) = \int_0^{\sqrt{a}} \left(1 - \frac{t^2}{a}\right)^a \omega(t) dt$. Montrer que $\lim_{a \to +\infty} g(a) = \int_0^{+\infty} e^{-t^2} \omega(t) dt$.

- **6)** a) [0.5 pt] Exprimer sans justification $\lambda = \int_0^{+\infty} \exp(-t^3) dt$ en fonction de $\Gamma\left(\frac{1}{3}\right)$.
- b) [2 pts] On considère $\forall n \in \mathbb{N}^*$, $I_n = \int_0^{+\infty} \frac{dt}{(1+t^3)^n}$ et $J_n = \int_0^{+\infty} \frac{dt}{(2+t^3)^n}$.

Donner sans justification un équivalent de I_n lorsque $n \to +\infty$, qu'on exprimera à l'aide de λ .

Exprimer J_n en fonction de I_n (d'où on pourrait déduire de ce qui précède un équivalent de J_n).

7) La question c) est indépendante des questions précédentes.

a) [1 pt] Soient
$$x > 0$$
 et $p \in \mathbb{N}$. Justifier que $\varphi : t \longmapsto \frac{|\ln t|^p t^{x-1}}{1+t} dt$ est intégrable sur $]0,1]$.

b) [1.5 pt] On considère
$$\forall x > 0, f(x) = \int_0^1 \frac{t^{x-1}}{1+t} dt$$
.

Expliciter sans justification la propriété de domination permettant de prouver que f est C^1 sur $]0, +\infty[$.

Nota bene : On ne demande ici ni d'énoncer ni de vérifier les autres hypothèses.

c) [1.5 pt] Soit
$$\Omega = \{z \in \mathbb{C}, \operatorname{Re} z > 0\}$$
. Pour $z \in \Omega$, on pose $f(z) = \int_0^1 \frac{t^{z-1}}{1+t} dt$.

Montrer que f est définie et continue sur Ω .

Remarque : Pour prouver la continuité, on utilisera la caractérisation séquentielle : soit $(z_n)_{n\in\mathbb{N}}$ une suite dans Ω convergeant vers $z\in\Omega$. Il s'agit de prouver que $\lim_{n\to+\infty}f(z_n)=f(z)$.

8) a) [0.5 pt] Soit
$$n \in \mathbb{N}^*$$
. Exprimer $\int_0^{+\infty} t^{\alpha-1} e^{-nt} dt$ en fonction de $\Gamma(\alpha) = \int_0^{+\infty} t^{\alpha-1} e^{-t} dt$.

b) [1.5 pt] Montrer que
$$\forall \alpha > 1$$
, $\int_0^{+\infty} \frac{t^{\alpha-1}}{e^t - 1} dt = \Gamma(\alpha) F(\alpha)$, où $F(\alpha) = \sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$.

c) [1.5 pt] Montrer que
$$\forall \alpha > 0$$
, $\int_0^{+\infty} \frac{t^{\alpha-1}}{e^t+1} dt = \Gamma(\alpha)G(\alpha)$, où $G(\alpha) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n^{\alpha}}$.

9) Soit
$$f:[a,b]\times[c,d]\to\mathbb{R}$$
 $(x,y)\longmapsto f(x,y)$ une application continue sur $[a,b]\times[c,d]$.

a) [0.5 pt] On considère
$$g: x \longmapsto \int_c^d f(x,u) \ du$$
.

Proposer sans justification une fonction de domination φ permettant de prouver que g est continue sur [a,b].

b) [1.5 pt] On considère
$$G(x) = \int_a^x \left(\int_c^d f(t, u) \ du \right) \ dt$$
 et $H(x) = \int_c^d \left(\int_a^x f(t, u) \ dt \right) \ du$.

Montrer brièvement que G et H sont de classe C^1 sur [a,b], et que G'(x)=H'(x).

c) [0.5 pt] En déduire le théorème de Fubini :
$$\int_a^b \left(\int_c^d f(x,y) \ dy \right) \ dx = \int_c^d \left(\int_a^b f(x,y) \ dx \right) \ dy$$
.

Soit f continue, positive, croissante sur [0,1]. On note s le réel tel que $[0,s]=\{t\in[0,1]\mid f(t)=0\}$.

On pose
$$\forall x \geq 0, \ \varphi(x) = \int_0^1 \sqrt{f(t) + x^2} \ dt$$
. Calculer $\varphi'(0)$.