Interrogation n°0. Corrigé

1) Les diviseurs de 2^n sont les 2^j , avec $0 \le j \le n$. Donc A = n + 1.

Les diviseurs de $12^n = 2^{2n}3^n$ sont les 2^j3^k , avec $0 \le j \le 2n$ et $0 \le k \le n$. Comme il y a **unicité** de la décomposition en facteurs premiers, M est le nombre de couples (j,k), donc B = (2n+1)(n+1).

2) a) Il y a $\binom{n+1}{2}$ couples (i,j) tels que i < j: on choisit la partie $\{i,j\}$ de [0,n].

Remarque: Pour j fixé, il y a j valeurs de i possibles. On peut aussi calculer N en utilisant $\sum_{i=0}^{n} j = \frac{1}{2}n(n+1)$.

b) $S = \sum_{j=0}^{n} \sum_{i=0}^{j-1} {j \choose i} = \sum_{j=0}^{n} \sum_{i=0}^{j-1} {j \choose i} = \sum_{j=0}^{n} (2^{j} - 1) = \sum_{j=0}^{n} 2^{j} - (n+1).$

Comme $\sum_{i=0}^{n} 2^{i} = (2^{n+1} - 1)$, obtient finalement $S = 2^{n+1} - n - 2$.

Remarque: On peut sommer aussi uniquement pour $j \ge 1$, car il n'y a aucun couple (i, 0).

3) a) On applique le théorème de d'Alembert-Gauss à Q(x) = P(x) - c.

Le polynôme Q n'est pas constant donc admet au moins une racine.

b) Il y a n racines sur \mathbb{C} , ssi elles sont simples, donc ssi Q et Q' n'ont pas de racines communes.

Or, Q' = P'.

Donc Q est scindé à racines simples ssi $c \notin \{P(z_1), ..., P(z_{n-1})\}$, où les z_k sont les racines de P'.

On conclut en notant que $\mathbb{C} \setminus \{P(z_1), ..., P(z_{n-1})\}$ est infini.

4) Supposons $|a| \le 1$. Soit $|z| \le 1$. Alors $|az| \le 1$, d'où a fortiori $-1 \le \text{Re}(az) \le 1$, donc $\text{Re}(1 - az) \ge 0$.

Réciproquement, supposons |a| > 1. On prend $z = \frac{\overline{a}}{|a|}$. Alors az = |a| donc Re(1 - az) < 0.

D'où l'implication réciproque par contraposition.

Remarque : Cette propriété se généralise dans tout espace euclidien E:

La relation $\forall z \in \mathbb{C}, \ |z| \le 1 \Rightarrow \operatorname{Re}(1 - az) \ge 0$ équivant à $\forall z \in \mathbb{C}, \ |z| \le 1 \Rightarrow \operatorname{Re}(a\overline{z}) \le 1$.

Elle se généralise donc par : $\forall x \in E, \ \|x\| \le 1 \ \Rightarrow \ \langle a, x \rangle \le 1.$

Avec Cauchy-Schwarz, on montre aisément $||a|| = \sup_{\|x\| \le 1} \langle a, x \rangle$, et le sup est atteint lorsque $x = \frac{a}{\|a\|}$.

5) a) Soit $z \in A$. Alors z, z^2, z^4, z^8, \dots appartiement à A.

Comme A est fini, par le principe des tiroirs, il existe i < j tels que $z^{(2^i)} = z^{(2^j)}$.

Donc z=0 ou $z^m=1$ avec $m=2^j-2^i\in\mathbb{N}^*$. Donc a fortiori z=0 ou |z|=1.

Autre preuve : Supposons $z \neq 0$ et $|z| \neq 1$. Alors les $z^{(2^i)}$ sont distincts, ce qui contredit A fini.

b) Une CNS est : n impair. Si n est pair, f(-1) = f(1) = 1, donc f n'est pas bijective.

Si n est impair, on peut montrer que f est injective (par Gauss) ou surjective (par Bezout) :

En effet, pour tout k, il existe (a,b) tels que 2a+bn=k, d'où $f(\omega^a)=\omega^{2a}=\omega^k$, avec $\omega=e^{2i\pi/n}$.

- **6)** a) Soit $n \geq 2$. \mathcal{E}_n est la réunion disjointe :
- de l'ensemble \mathcal{E}_n^- des parties $A \in \mathcal{E}_n$ qui ne contiennent pas n: on a $\mathcal{E}_n' = \mathcal{E}_{n-1}$
- de l'ensemble \mathcal{E}_n^+ des parties $A \in \mathcal{E}_n$ qui contiennent n (et donc ne contiennent pas n-1):

On a card $\mathcal{E}_n'' = \operatorname{card} \mathcal{E}_{n-2}$, car l'application $A \longmapsto A \setminus \{n\}$ est une bijection de \mathcal{E}_n'' sur \mathcal{E}_{n-2} .

Donc $a_n = a_{n-1} + a_{n-2}$.

b) On reconnaît une suite de Fibonacci.

Il exise donc $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\forall n \in \mathbb{N}$, $a_n = \alpha \varphi^n + b \psi^n$, où $\varphi = \frac{1}{2}(1 + \sqrt{5})$ et $\psi = \frac{1}{2}(1 - \sqrt{5})$.

Comme $\lim_{n\to+\infty} a_n = +\infty$ et $|\psi| < 1$, alors on a nécessairement $\alpha \neq 0$.

Donc $a_n \sim \alpha \varphi^n$, et ainsi $\lim_{n \to +\infty} \frac{a_n}{a_{n-1}} = \varphi \simeq 1.61$

Autre argument: si on admet l'existence de L, on a $L = 1 + \frac{1}{L}$ en utilisant $\frac{a_n}{a_{n-1}} = 1 + \frac{a_{n-2}}{a_{n-1}}$.

7) a) Si n = 2a + 3b, alors n + 2 = 2(a + 1) + 3b.

Ainsi, si la propriété est vraie pour n = 2, elle est vraie pour n + 2.

Or, la propriété est vraie pour 2 et 3. Par récurrence d'ordre 2, elle est donc vraie pour tout $n \ge 2$.

b) Pour $n \geq 5$ et $(a, b) \in A_n$, on a nécessairement $a \geq 1$ ou $b \geq 1$.

Donc
$$A_n = A_n^{(1,0)} \cup A_n^{(0,1)}$$
, où $A_n^{(1,0)} = \{(a,b) \in A_n \mid a \ge 1\}$ et $A_n^{(0,1)} = \{(a,b) \in A_n \mid a \ge 1\}$.

On a $(a,b) \in A_n^{(1,0)}$ ssi $(a-1,b) \in A_{n-2}$. On obtient donc une bijection entre $A_n^{(1,0)}$ et A_{n-2} .

De même, $A_n^{(0,1)}$ est en bijection avec A_{n-3} .

De plus $A_n^{(1,0)} \cap A_n^{(0,1)} = A_n^{(1,1)} = \{(a,b) \in A_n \mid a \ge 1 \text{ et } b \ge 1\}$, qui est en bijection avec A_{n-5} .

Donc $c_n = \operatorname{card}(A_n^{(1,0)}) + \operatorname{card}(A_n^{(0,1)}) - \operatorname{card}(A_n^{(1,0)}) - A_n^{(0,1)}) = c_{n-2} + c_{n-3} - c_{n-5}.$

8) a) On a
$$\frac{1}{e^{ix}} + \frac{1}{e^{iy}} + \frac{1}{e^{iz}} = \overline{(e^{ix} + e^{iy} + e^{iz})} = 0.$$

b) Posons $P(X) = (X - e^{ix})(X - e^{iy})(X - e^{iz}) = X^3 - aX^2 + bX - c$.

On a $a = e^{ix} + e^{iy} + e^{iz} = 0$. D'autre part, $b = e^{ix}e^{iy} + e^{ix}e^{iz} + e^{iy}e^{iz} = 0$ par a).

Comme $c = e^{i\varphi}$ avec $\varphi = x + y + z$, alors on a bien $P(X) = X^3 - e^{i\varphi}$.

Remarque: D'où on déduit que e^{ix} , e^{iy} et e^{iz} forment les sommets d'un triangle équilatéral.

9) a) Un doublet de paires (i, j, k, l) est entièrement défini par le couple $(\{a, b\}, A)$, où a et b sont les valeurs des deux paires, avec a < b, et où A est la paire des deux éléments de $\{i, j, k, l\}$ valant a.

Donc
$$M = \binom{n}{2} \times \binom{4}{2} = 6\binom{n}{2} = 3n(n-1).$$

b) $E(X_iX_jX_kX_l) = 1$ dans les deux cas suivants : $\begin{cases} -\text{ les quatre entiers sont \'egaux (*)} \\ -(i,j,k,l) \text{ est un doublet de paires (**)} \end{cases}$

Et $E(X_iX_jX_kX_l)=0$ sinon (en effet, l'un des termes apparaît alors une seule fois ;

si par exemple $i \notin \{j, k, l\}$, on a $E(X_i X_j X_k X_l) = E(X_i) E(X_j X_k X_l) = 0$.

c) On a
$$S^4 = (\sum_{i=1}^n X_i)^4 = \sum_{i,j,k,l} X_i X_j X_k X_l$$
.

Donc $E(S^4)$ est le nombre de quadruplets (i, j, k, l) vérifiant (*) ou (**).

Il y a n solutions pour (*) et M pour (**). Donc $E(S^4) = n + M = n(3n - 2)$.

d) Comme les X_k sont indépendants, la loi de S ne dépend que de celle des X_k . Or, X_k et $-X_k$ ont même loi.

Donc S et -S ont même loi, donc $E(S^3) = E((-S)^3)$, d'où $E(S^3) = 0$.

Remarque : On pourrait aussi prouver la propriété en montrant que $E(X_iX_jX_k)=0$ pour tout (i,j,k).

Remarque: Plus généralement, par le même argument, on a $E(S^p)=0$ pour tout entier p impair.

10) a) Posons
$$Q = \prod_{k=0}^{n-1} (X - e^{2ik\pi/n})$$
. On a $Q = \frac{X^n - 1}{X - 1} = 1 + X + X^2 + \dots + X^{n-1}$.

Or $\rho = |Q(1)|$, donc $\rho = n$.

b) En notant N le produit des A_jA_k avec $j \neq k$, on a $N = M^2$. Il suffit donc de calculer N.

Considérons, pour
$$0 \le k \le n-1$$
, $f(A_k) = \prod_{i \ne k} A_i A_i$. On a ainsi $N = f(A_0)f(A_1)...f(A_{n-1})$.

Mais, par isométrie, tous les $f(A_k)$ sont égaux, donc $N = f(A_0)f(A_1)...f(A_{n-1}) = f(A_0)^n$.

De plus, par rotation et renumérotation, on se ramène au cas où A_k est le point d'affixe $e^{2ik\pi/n}$.

Par a), on a alors $f(A_0) = \rho$. D'où on déduit $N = n^n$, c'est-à-dire $M = n^{n/2}$.