Partie I

On considère la matrice réelle $M = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$.

- 1. Montrer que M possède une unique valeur propre réelle λ , et que $\lambda \in [1,2]$.
- **2.** Soit σ une valeur propre complexe non réelle de M.

Calculer $\lambda |\sigma|^2$ et comparer $|\sigma|$, 1 et $\frac{1}{\sqrt{2}}$.

- **3.a)** Montrer que I_3 , M et M^2 sont linéairement indépendants dans $\mathcal{M}_3(\mathbb{R})$.
- **3.b)** Exprimer M^3 comme combinaison linéaire à coefficients entiers de I_3 et M.

Indication : Utiliser le théorème de Cayley-Hamilton.

3.c) En déduire qu'il existe deux entiers α et β tels que $\forall n \in \mathbb{N}$, $M^{n+3} = \alpha M^{n+1} + \beta M^n$.

Pour tout entier $n \in \mathbb{N}$, on pose $u_n = \operatorname{tr}(M^n)$ et $v_n = \cos(\pi u_n)$.

- **4.a)** Pour $0 \le n \le 10$, calculer u_n et v_n .
- **4.b)** Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est périodique, et préciser sa période.
- **4.c)** Montrer que la suite $(\omega_k)_{n\in\mathbb{N}}$ définie par $\omega_k = \sum_{n=0}^k v_k$ n'est pas bornée.
- **5.a)** Exprimer u_n en fonction de λ , σ et n.
- **5.b)** La suite $(y_k)_{n\in\mathbb{N}}$ définie par $y_k = \sum_{n=0}^k \cos(\pi \lambda^n)$ est-elle bornée ?

Partie II

On note φ la fonction périodique de période 1 qui à tout réel $x \in \left] -\frac{1}{2}, \frac{1}{2} \right]$ associe |x|.

- **6.** Soient α et β deux nombres réels tels que $1 \le \alpha < \beta$. Pour $n \in \mathbb{N}^*$, on pose $J_n = \int_{\alpha}^{\beta} \cos(2\pi x^n) \ dx$.
- **6.a)** On suppose dans cette seule question 6.a) que $\forall x \in [\alpha, \beta]$, $\lim_{n \to +\infty} \varphi(x^n) = 0$.

Montrer que $\lim_{n\to+\infty} J_n = \beta - \alpha$.

- **6.b)** En utilisant un changement de variable et une intégration par parties, déterminer $\lim_{n\to+\infty} J_n$.
- **6.c)** On note Δ l'ensemble des $\lambda \in [1, +\infty[$ tels que $(\cos(2\pi\lambda^n))_{n\in\mathbb{N}}$ ne converge pas vers 1.

Que peut-on déduire quant à Δ des deux questions précédentes ?