Interrogation nº14. Corrigé

1) Soit $x \in]-R, R[$. La série de fonctions $\sum_{n=0}^{+\infty} a_n t^n$ converge normalement sur le segment [0,x].

Donc
$$\int_0^x f(t) dt = \sum_{n=0}^{+\infty} \int_0^x a_n t^n dt = \sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$$
.

Variante : On dérive terme à terme $\sum_{n=0}^{+\infty} a_n \frac{x^{n+1}}{n+1}$ (cv normale de la série des dérivées sur [0,x]).

2) a)
$$\frac{R}{2}$$
; b) R ; c) \sqrt{R} ; d) R ; e) max $(1, R)$.

Remarque : Pour e), la preuve est la suivante : Posons $b_n = \min(|a_n|, 1)$. Notons R' le rayon de $\sum b_n z^n$.

- Supposons R > 1. Alors $\sum |a_n|$ converge, donc $\lim_{n \to +\infty} a_n = 0$, donc $b_n = |a_n|$ pour n assez grand. Donc R' = R.
- Supposons $R \leq 1$. On a $0 \leq b_n \leq 1$, donc $\sum b_n z^n$ converge pour tout |z| < 1, donc $R' \geq 1$. Supposons par l'absurde que $\sum b_n z^n$ converge pour un |z| > 1. Alors nécessairement $b_n \neq 1$ pour n assez grand, donc $b_n = |a_n|$ pour n assez grand, ce qui contredit $R \leq 1$. Donc R' = 1.
- **3)** a) Supposons g nulle. Comme R > 0, alors $b_n = \frac{g^{(n)}(0)}{n!} = 0$. Réciproque immédiate.
- b) Pour $x \in]-R, R[$, on a $f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{ donc } f(-x) = \sum_{n=0}^{+\infty} (-1)^n a_n x^n.$

Donc f est paire, c'est-à-dire f(x) = f(-x), ssi $\forall n \in \mathbb{N}$, $a_n = (-1)^n a_n$, c'est-à-dire ssi a_n est nul pour tout n impair.

4) a) Supposons l < 1. Pour l < k < 1, on a $|u_n|^{1/n} \le k$ pour n assez grand.

Donc $|u_n| \le k^n$ pour n assez grand, d'où la convergence de $\sum |u_n|$.

Supposons l < 1. Pour l < k < 1, on a $|u_n| \ge k^n$ pour n assez grand. Donc $\lim_{n \to +\infty} |u_n| = +\infty$.

- b) Si $\rho < \frac{1}{L}$, alors $\lim_{n \to +\infty} (|a_n| \rho^n)^{1/n} = L\rho < 1$, donc $\sum |a_n| \rho^n$ converge, donc $R \ge \frac{1}{L}$.
- Si $\rho > \frac{1}{L}$, alors $(|a_n| \rho^n)^{1/n} = L\rho > 1$, donc $(|a_n| \rho^n)^{1/n}$ tend vers $+\infty$, donc $R \le \frac{1}{L}$. Donc $R = \frac{1}{L}$.
- **5)** On a $R = \min(\sqrt{R_0}, \sqrt{R_1})$.

En effet, $(\rho^n a_n)_{n\in\mathbb{N}}$ est bornée ssi $((\rho^2)^n a_{2n})_{n\in\mathbb{N}}$ et $((\rho^2)^n a_{2n+1})_{n\in\mathbb{N}}$ sont bornées.

Or, $((\rho^2)^n a_{2n})_{n \in \mathbb{N}}$ est bornée si $\rho^2 < R_0$ et ne l'est pas si $\rho^2 > R_0$. Et de même avec R_1 pour $((\rho^2)^n a_{2n+1})_{n \in \mathbb{N}}$.

- **6)** a) La convergence résulte de $\frac{1}{n} \frac{1}{x+n} = \frac{x}{n(x+n)} = O\left(\frac{1}{n^2}\right)$.
- b) Posons $f_n(x) = \frac{1}{n} \frac{1}{x+n}$. On a $f'_n(x) = \frac{1}{(x+n)^2}$. Donc $\sup_{\mathbb{R}} |f'_n| = \frac{1}{n^2}$.

Donc la série de fonctions $\sum f'_n$ converge normalement sur \mathbb{R} , et ainsi S est de classe C^1 .

On a aussi $S'(x) = \sum_{n=1}^{+\infty} f'_n(x)0$, donc f est croissante.

c) On revient aux sommes partielles (qui se télescopent) :

Avec
$$S_p(x) = \sum_{n=1}^p \left(\frac{1}{n} - \frac{1}{x+n}\right)$$
, on a $S_p(x+1) - S_p(x) = \frac{1}{x+1} - \frac{1}{x+p+1}$.

En faisant tendre $p \to +\infty$, on obtient $S(x+1) - S(x) = \frac{1}{x+1}$.

d) Pour $n \in \mathbb{N}$, on a $S(n) = \sum_{k=1}^{n} \frac{1}{k}$, donc $S(n) \sim \ln n$ lorsque n tend vers $+\infty$.

Comme S est croissante, alors $\ln(n) \le S(x) \le \ln(n+1)$, où $n = \lfloor x \rfloor$.

On a $\ln(n) \sim \ln(n+1) \sim \ln x$ lorsque x tend vers $+\infty$, donc par pincement, $S(x) \sim_{+\infty} \ln x$.

Remarque: Une variante consiste à évaluer $S(x) = S(r) + \sum_{k=1}^{n} \frac{1}{r+k}$, où r = x-n, par des intégrales, en utilisant

le fait que S est bornée sur [0, 1], donc S(r) = O(1) lorsque x tend vers $+\infty$.

En considérant le produit de Cauchy de $(1-t^2)^{-1/2}$ par lui même, on obtient par unicité du DSE

$$\sum_{(j,k)\in\mathbb{N}^2\text{ et }j+k=m}\frac{1}{4^j}\binom{2j}{j}\frac{1}{4^k}\binom{2k}{k}=1,\text{ c'est-\`a-dire }\sum_{(j,k)\in\mathbb{N}^2\text{ et }j+k=m}\binom{2j}{j}\binom{2k}{k}=4^m$$

b) On considère le produit des polynômes $(1+x)^n(1+x)^n=(1+x)^{2n}$.

Le coefficient de degré n est $\sum_{(j,k)\in\mathbb{N}^2} \sum_{i=1}^n \binom{n}{j} \binom{n}{k} = \binom{2n}{n}$, c'est-à-dire $\sum_{k=0}^n \binom{n}{k} \binom{n}{n-k} = \binom{2n}{n}$.

7) a) La série de fonctions positives $\sum \ln \left(1 + \frac{x}{2^n}\right)$ converge normalement sur tout segment [0,a].

En effet,
$$\sup_{x \in [0,a]} \ln \left(1 + \frac{x}{2^n} \right) = \ln \left(1 + \frac{a}{2^n} \right) = O\left(\frac{1}{2^n} \right).$$

Donc $f(x) = \exp\left(\sum_{n=0}^{+\infty} \ln\left(1 + \frac{x}{2^n}\right)\right)$ est continue comme composée de fonctions continues.

b) On vérifie aisément que $f(x) = (1+x)f\left(\frac{x}{2}\right)$. Réciproquement, soit g continue vérifiant la propriété.

Alors
$$g(x) = \prod_{n=0}^{N-1} \left(1 + \frac{x}{2^n}\right) g\left(\frac{x}{2^N}\right)$$
 pour tout N. Avec $N \to +\infty$, on obtient $g(x) = f(x)$.

d) On cherche une solution g de (E) sous la forme $g(x) = \sum_{n=0}^{+\infty} a_n x^n$ de rayon $R = +\infty$.

Deux séries entières coincidant sur \mathbb{R}^+ ont les mêmes dérivées en 0, donc les mêmes coefficients.

Donc
$$g$$
 vérifie (E) ssi $a_0 = 1$ et $a_n = \frac{1}{2^n} a_n + \frac{1}{2^{n-1}} a_{n-1}$, c'est-à-dire $a_n = \frac{2}{2^n - 1} a_{n-1}$.

On a alors $\lim_{n\to+\infty}\frac{a_n}{a_{n-1}}=0$, donc $(a_n)_{n\in\mathbb{N}}$ définit bien une série entière $\sum a_nx^n$ de rayon $R=+\infty$.

8) a) On a
$$X^2e^{\lambda X} \leq m^2e^{\lambda X}$$
, donc $E(X^2e^{\lambda X}) \leq E(e^{\lambda X})$, et comme $E(e^{\lambda X}) > 0$, alors $M(\lambda) \leq m^2$.

b) Par le théorème du transfert, $L(\lambda) = \sum_{n=0}^{+\infty} \alpha_n e^{\lambda x_n}$, où $\alpha_n = P(X = x_n)$.

Soit $p \in \mathbb{N}$. La dérivée p-ième de $f_n : \lambda \longmapsto \alpha_n e^{\lambda x_n}$ vaut $f_n^{(p)}(\lambda) = \alpha_n(x_n)^p e^{\lambda x_n}$.

Les séries de fonctions $\lambda \longmapsto \sum_{n=0}^{+\infty} \alpha_n(x_n)^p e^{\lambda x_n}$ convergent normalement sur tout segment $[-\rho, \rho]$, car

$$\left| \sup_{\lambda \in \mathbb{N}} f_n^{(p)}(\lambda) \right| \le m^p e^{\rho m} \ \alpha_n \text{ et que } \sum_{n=0}^{+\infty} \alpha_n < +\infty$$

Donc L est de classe C^{∞} sur \mathbb{R} , et $L^{(p)}(\lambda) = \sum_{n=0}^{+\infty} \alpha_n(x_n)^p e^{\lambda x_n} = E(X^p e^{\lambda X})$.

c) On a
$$\varphi(0) = \ln(1) = 0$$
, $\varphi'(0) = E(X) = 0$ et par a), $\varphi''(\lambda) = M(\lambda) - N(\lambda)^2 \le M(\lambda) \le m^2$.

Par l'inégalité de Taylor-Lagrange, $|\varphi(\lambda)| \leq \frac{1}{2}m^2\lambda^2$, donc $L(\lambda) \leq \exp\left(\frac{1}{2}m^2\lambda^2\right)$.

9) Pour $z \in \Delta$, $|\exp(z)| = \exp(\operatorname{Re} z) \le \exp(|z|) < \exp(\ln 2) = 2$, donc $\exp(z) \ne 2$.

On peut donc considérer $\forall z \in \Delta, f(z) = \frac{1}{2 - \exp(z)}$.

On a alors
$$f(z) = \frac{1}{2} \frac{1}{1 - \exp(z)/2} = \frac{1}{2} \sum_{n \in \mathbb{N}} \frac{1}{2^n} \exp(z)^n = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{1}{2^n} \exp(nz)$$
.

D'où
$$f(z) = \frac{1}{2} \sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \frac{n^m z^m}{2^n m!}$$
. Posons $u_{n,m} = \frac{n^m z^m}{2^n m!}$.

Pour
$$z \in \Delta$$
, $(u_{n,m})_{(n,m) \in \mathbb{N} \times \mathbb{N}}$ est sommable, car $\sum_{n=0}^{+\infty} \sum_{m=0}^{+\infty} \left| \frac{n^m}{2^n m!} z^m \right| = \sum_{n=0}^{+\infty} \frac{1}{2^n} \exp(n|z|) = \frac{1}{1 - \exp(|z|)/2}$.

Par Fubini, on a donc $f(z) = \frac{1}{2} \sum_{m=0}^{+\infty} \sum_{n=0}^{+\infty} \frac{n^m z^m}{2^n m!} = \sum_{m=0}^{+\infty} a_m z^m$, où $a_m = \sum_{n=0}^{+\infty} \frac{n^m}{2^{n+1} m!}$.