Interrogation n°11. Corrigé.

- 1) a) Pour tout $X \in \mathbb{R}^n$, on a $\langle X, P^T A P X \rangle = \langle P X, A P X \rangle = \langle Y, A Y \rangle \geq 0$. Donc $P^T A P$ est positive.
- b) Première preuve : On applique a) en prenant $P = \text{Diag}(\mu_1, ..., \mu_n)$.

Seconde preuve : On a $\sum_i \sum_j b_{ij} x_i x_j = \sum_i \sum_j a_{ij} \mu_i \mu_j x_i x_j = \sum_i \sum_j a_{ij} (\mu_i x_i) (\mu_j x_j) = \langle Y, AY \rangle$, avec $y_i = \mu_i x_i$.

- c) Si A et B sont positives, alors $\langle X, (A+B)X \rangle = \langle X, AX \rangle + \langle X, BX \rangle \geq 0$.
- d) Supposons (i).

Par le th spectral, A s'écrit $UDU^{-1} = UDU^T$, avec $U \in O_n(\mathbb{R})$ et $D = \text{Diag}(\lambda_1, ..., \lambda_n)$, et $\lambda_i \geq 0$.

On a $D = \sum_{i=1}^n \lambda_i E_{ii}$. Donc $D = \sum_{i=1}^n (\mu_i E_i) (\mu_i E_i)^T$, avec $\mu_i = \sqrt{\lambda_i}$.

Avec $Z_i = \mu_i U E_i$, on obtient donc bien $A = \sum_{k=1}^n Z_k Z_k^T$.

Supposons (ii): A est symétrique comme somme des matrices symétriques $Z_k Z_k^T$.

Par c), il suffit donc de prouver que ZZ^T est positive. Or, $\langle X, ZZ^TX \rangle = (Z^TX)^2 = \langle Z, X \rangle^2 \geq 0$.

e) On sait par d
) que B s'écrit $\sum_{k=1}^n Z_k Z_k^T.$

Dans le cas où $B = ZZ^T$, on a $b_{ij} = \mu_i \mu_j$, donc par b), la matrice $C = (a_{ij} \mu_i \mu_j)$ est positive.

Dans le cas général, $B = \sum_{k=1}^{p} Z_k Z_k^T$.

Donc C est la somme des matrices $C_k = (a_{ij}\lambda_i^{(k)}\lambda_i^{(k)})$, où les $\lambda_i^{(k)}$ sont les coefficients du vecteur Z_k .

Ainsi, C est positive par c) comme somme de matrices positives.

2) a) On a $(X \mid AX) = \frac{1}{2}(X \mid UX) + \frac{1}{2}(X \mid U^TX) = (X \mid UX)$.

Par Cauchy-Schwarz, $|(X \mid UX)| \le ||X|| ||UX|| = ||X||^2$, car U conserve la norme : ||UX|| = ||X||

b) La matrice A est symétrique réelle donc diagonalisable.

Soit $\lambda \in \operatorname{Sp}(A)$. Il existe $X \in \mathbb{R}^n$ non nul tel que $AX = \lambda X$.

Par a), $|(X \mid AX)| \leq ||X||^2$, donc $|\lambda| ||X||^2 \leq ||X||^2$, et comme X n'est pas nul, $|\lambda| \leq 1$.

3) On a $a_{ij} = \langle e_i, u(e_j) \rangle$. Remarque: En particulier $a_{ii} = \langle e_i, u(e_i) \rangle$. Comme $u \in S^{++}(E), \overline{a_{ii} > 0}$.

Comme $u \in S^{++}(E)$, la forme bilinéaire $\varphi : (x,y) \longmapsto \langle x,u(y) \rangle$ est un produit scalaire.

Donc par Cauchy-Schwarz, $\varphi(e_i, e_j)^2 \leq \varphi(e_i, e_i)\varphi(e_j, e_j)$, c'est-à-dire $a_{ij}^2 \leq a_{ii}a_{jj}$.

L'inégalité $a_{ij}^2 < a_{ii}a_{jj}$ est en fait stricte car e_i et e_j ne sont pas colinéaires.

4) a) On considère $f: O_n^+(\mathbb{R}) \to O_n^-(\mathbb{R}) \ U = (U_1, ..., U_n) \longmapsto V = (U_1, ..., U_{n-1}, -U_n).$

On a bien $(V_1, ..., V_n)$ base orthonormée et $\det V = -\det U = -1$.

Enfin, f est bijective, car tout $V \in O_n^-(\mathbb{R})$ admet $U = (V_1, ..., V_{n-1}, -V_n) \in O_n^+(\mathbb{R})$ comme unique antécédent.

b) (\Rightarrow) Si A est symétrique, alors par le th spectral A est orthosemblable à une matrice diagonale : il existe $U = (U_1, ..., U_n) \in O_n(\mathbb{R})$ et D diagonale telle que $U^{-1}AU = D$.

Ainsi, $(U_1, ..., U_n)$ est une BON de vecteurs propres. Si $U_n \in E_\lambda$, on a $-U_n \in E_\lambda$.

Donc $(V_1, ..., V_n)$ défini au a) est aussi une BON de vecteurs propres et vérifie donc $V^{-1}AV = D$.

D'où le résultat, car U ou V appartient à $O_n^+(\mathbb{R})$.

- (\Leftarrow) Réciproquement, si D diagonale et $U \in O_n^+(\mathbb{R})$, la matrice $A = UDU^{-1} = UDU^T$ est bien symétrique.
- 5) a) On a $P(\theta)$ symétrique réelle donc diagonalisable.

De plus, $\det P(\theta) = 0$. Donc $\operatorname{Sp}(P(\theta)) = \{0, \operatorname{tr} P(\theta)\} = \{0, 1\}$

On en déduit que f_{θ} est une projection orthogonale.

Remarque: Avec $Z = (\cos \theta, \sin \theta)$, on a $P(\theta) = ZZ^T$ et $f(X) = (Z \mid X)Z$ projection orthogonale sur $\mathbb{R}Z$.

b) λ et μ sont les racines de $x^2 - 2x + (\sin \theta)^2 = 0$, donc $\lambda(\theta) = 1 + |\cos \theta|$ et $\mu(\theta) = 1 - |\cos \theta|$.

On a $\lambda(\theta) + \mu(\theta) = 2$, donc Δ est inclus dans la droite x + y = 2.

Or, $\lambda(\theta)$ décrit [1, 2]. On en déduit que Δ est le segment d'extrémités (1, 1) et (2, 0).

Remarque : Lorsqu'on considère deux projections orthogonales sur des droites, on peut toujours trouver une BON où les matrices de ces deux projections sont respectivement P(0) et $P(\theta)$.

En effet, on choisit une BON de diagonalisation pour la première donnant P(0), et pour la seconde, on note que la matrice $P(\theta)$ est $UP(0)U^{-1}$, où U est la matrice de rotation d'angle θ .

6) a)
$$P(d \text{ divise } X) = \sum_{n=1}^{+\infty} \frac{1}{\lambda (dq)^2} = \frac{1}{d^2}.$$

b) Par additivité, on a : p = P(X et Y pairs) + P(X et Y impairs).

Comme X et Y sont indépendants, on obtient : $p = P(X \text{ pair})^2 + P(X \text{ impair})^2 = \left(\frac{1}{4}\right)^2 + \left(\frac{3}{4}\right)^2 = \frac{5}{8}$.

c) On considère une famille FINIE $(p_1,...,p_n)$ de nombres premiers distincts.

Posons $A_k: p_k$ divise X. On a $A_1 \cap A_2 \cap ... \cap A_n$ ssi $m = p_1...p_n$ divise X.

On a
$$P(A_1 \cap A_2 \cap ... \cap A_n) = P(m \text{ divise } X) = \frac{1}{m^2} = \frac{1}{p_1^2 ... p_n^2} = P(A_1) ... P(A_n).$$

Donc les événements $(p_n \text{ divise } X)$ sont mutuellement indépendants.

7) On considère $B_0 = A_0$ et $\forall p \in \mathbb{N}^-, B_p = A_p \setminus A_{p-1}$.

Les familles $(x_n)_{n\in A_p}$ et $(x_n)_{n\in B_p}$ sont sommables comme sous-familles de la famille sommable $(x_n)_{n\in E}$.

Comme A_p est la réunion disjointe des B_k avec $0 \le k \le p$, on a $S_p = \sum_{k=0}^p \left(\sum_{n \in B_k} x_n\right)$.

Or, E est la réunion disjointe des B_p . Donc $\lim_{p\to+\infty} S_p = \sum_{p=0}^{+\infty} \left(\sum_{n\in B_p} x_n\right) = \sum_{n\in E} x_n$.

8) a) La famille $\left(\frac{1}{2^{\varphi(r)}}\right)_{r\in\mathbb{O}}$ est sommable, car $\varphi(r)$ décrit \mathbb{N}^* et $\sum_{n=1}^{+\infty}\frac{1}{2^n}=1$.

Donc f est bien définie, et $0 \le f(x) \le 1$ pour tout réel x.

Considérons une v.a. $X: \Omega \to \mathbb{Q}$ telle que $P(X=r) = \frac{1}{2\varphi(r)}$.

Remarque: On peut prendre $X:\mathbb{Q}\to\mathbb{Q},\ r\longmapsto r$ où \mathbb{Q} est muni de la tribu $P(\mathbb{Q})$ et de la loi $P(\{r\})=\frac{1}{2^{\varphi(r)}}$.

b) On a $f(x) = P(X \le x)$.

Pour $x \ge y$, on a $(X \le x) \subset (X \le y)$, donc $P(X \le x) \le P(X \le y)$, c'est-à-dire $f(x) \le f(y)$.

(Variante sans les probas : On a $\Delta(x) \subset \Delta(y)$, donc f(x) est une sous-somme de f(y)).

Considérons l'événément $A_n: (X \leq n)$. La suite $(A_n)_{n \in \mathbb{N}}$ est croissante et $\bigcup_{n \in \mathbb{N}} A_n = \Omega$.

Donc par continuité croissante $\lim_{n\to+\infty} P(A_n) = P(\Omega) = 1$, c'est-à-dire $\lim_{n\to\infty} f(n) = 1$.

Remarque: Comme f est croissante, alors $\lim_{x\to\infty} f(x)$ existe t elle vaut donc aussi 1.

(Noter l'importance d'utiliser une intersection dénombrable pour pouvoir appliquer le cours).

Variante: On peut aussi déduire $\lim_{n\to\infty} f(n) = 1$ de l'exercice 7), avec $S_n = \sum_{r\leq n} \frac{1}{2\varphi(r)}$.

Autre preuve sans théorème admis : On fixe p. On montre que pour x assez grand, tous les termes 2^{-k} , avec $k \le p$, sont dans la somme f(x), donc pour x assez grand, $f(x) \ge 1 - \sum_{k=p+1}^{+\infty} 2^{-k} \ge 1 - 2^{-p}$.

c) On a $\bigcap_{n>1} (X \leq \frac{1}{n}) = (X \leq 0)$, donc par continuité décroissante $L_0^+ = P(X \leq 0) = f(0)$.

Et de même $\bigcup_{n\geq 1} (X\leq -\frac{1}{n})=(X<0)$, donc continuité croissante $L_0^-=P(X<0)=f(0)-2^{-\varphi(0)}$.

Remarque : La fonction f est strictement croissante de \mathbb{R} sur]0,1[, est continue en tout irrationnel, et en chaque rationnel r est continue à droite et admet une limite à gauche, avec $\lim_{r^+} f - \lim_{r^-} f = 2^{-\varphi(r)}$.