Interrogation n°10. Barème sur 23 pts. Durée 1h05

1) [2 pts] Soient E un espace euclidien et $(a_1, a_2, ..., a_n)$ une base de E.

On note $(e_1, e_2, ..., e_n)$ la base orthonormée obtenue à partir de $(a_1, a_2, ..., a_n)$ par le procédé de Gram-Schmidt.

Donner sans justification une définition explicite (récursive) des e_k en fonction des a_k .

Remarque: On pourra faire intervenir des vecteurs $b_1, b_2, ..., b_n$ comme dans le cours.

- 2) [2 pts] Soit $(e_1, e_2, ..., e_n)$ une famille orthonormée d'un espace préhilbertien E. Soit $x \in E$.
- a) On pose $y = \sum_{i=1}^{n} \langle e_i, x \rangle \ e_i$. Justifier brièvement que $x y \in F^{\perp}$, où $F = \text{Vect}(e_1, e_2, ..., e_n)$.
- b) En déduire l'inégalité de Bessel : $\sum_{i=1}^{n} \langle e_i, x \rangle^2 \leq ||x||^2$, et préciser les cas d'égalité.
- 3) Soit $u \in O(E)$ un automorphisme orthogonal.
- a) [1 pt] Montrer que les sev propres $E_1 = \text{Ker}(u \text{Id})$ et $E_{-1} = \text{Ker}(u + \text{Id})$ sont orthogonaux.
- b) [2 pts] On suppose que u est de plus diagonalisable. En justifiant votre réponse, donner la nature de u.
- 4) [1.5 pt] Soit E un espace euclidien de dimension n. Soit $a \in E$ un vecteur unitaire, c'est-à-dire ||a|| = 1.

On note p la projection orthogonale sur $H=a^{\perp}$. Montrer que $\langle p(x),p(y)\rangle=\langle x,y\rangle-\langle a,x\rangle\langle a,y\rangle$.

- 5) Soit E un espace euclidien.
- a) [1.5 pt] Soient y et $z \in E$. On suppose que $\forall t \in \mathbb{R}$, $||y|| \le ||y + tz||$. Montrer que $\langle y, z \rangle = 0$.
- b) [2 pts] On suppose $E = F \oplus G$. On note p la projection sur F parallèlement à G.

Montrer que les assertions suivantes sont équivalentes :

- (i) p est une projection orthogonale, c'est-à-dire F et G orthogonaux
- (ii) $\forall x \in E, \|p(x)\| \le \|x\|$.
- 6) [3 pts] Soient A et $B \in GL_n(\mathbb{R})$ inversibles. Montrer que les assertions suivantes sont équivalentes :
- (i) Il existe $U \in O_n(\mathbb{R})$ telle que $\forall j \in \{1, 2, ..., n\}, UA_j = B_j$
- (ii) Il existe $U \in O_n(\mathbb{R})$ telle que UA = B
- (iii) $A^T A = B^T B$.
- 7) Pour toute famille $(x_1,...,x_p)$ d'un espace euclidien, on définit

$$\operatorname{Gram}(x_1,...,x_p) = \det M$$
, où $M = (\langle x_i, x_j \rangle)_{1 \le i \le p, 1 \le j \le p} \in \mathcal{M}_p(\mathbb{R})$

- a) [1 pt] Soit \mathcal{B} une BON de Vect $(x_1,...,x_p)$. Montrer que $\operatorname{Gram}(x_1,...,x_p) = (\det_{\mathcal{B}}(x_1,...,x_p))^2$.
- b) [2.5 pts] Soit $H = \text{Vect}(a_1, ..., a_{n-1})$ un hyperplan d'un espace euclidien E de dimension n.

Soit x un vecteur de E. On définit y le projeté orthogonal de x sur H.

Montrer que $Gram(a_1, ..., a_{n-1}, x) = Gram(a_1, ..., a_{n-1}, x - y)$, et en déduire

$$d(x,H)^{2} = \frac{\operatorname{Gram}(a_{1},...,a_{n-1},x)}{\operatorname{Gram}(a_{1},...,a_{n-1})}$$

8) a) [1.5 pt] Soit $n \in \mathbb{N}$. Justifier (en utilisant un produit scalaire bien choisi) qu'il existe un unique polynôme B de degré n et unitaire (c'est-à-dire de coefficient dominant 1) tel que

$$\forall P \in \mathbb{R}_{n-1}[X], \quad \int_0^{+\infty} B(t)P(t) \ e^{-t} \ dt = 0$$

Remarque: On ne justifiera pas que le produit scalaire utilisé est bien un produit scalaire.

b) [2 pts] On pose $L(t)=(-1)^nf^{(n)}(t)$ e^t , où $f^{(n)}$ désigne la dérivée n fois de $f:t\longmapsto t^ne^{-t}$.

Justifier que L est une fonction polynôme en explicitant ses coefficients.

Puis démontrer (sans donner tous les détails du calcul d'intégrale) que L = B.

c) [1 pt] Montrer que B est scindé à racines simples et que les racines appartiennent à $]0, +\infty[$.

Suggestion: Considérer $P(t)=(t-\alpha_1)...(t-\alpha_r)$ où les α_j sont LES racines d'ordre impair de B sur $]0,+\infty[$.