Interrogation n°6. Corrigé

1) On a $A_n(u_{n+1} - u_n) = O(|u_{n+1} - u_n|).$

Mais la série $\sum |u_{n+1} - u_n|$ converge, car $(u_n)_{n \in \mathbb{N}}$ converge et que $|u_{n+1} - u_n| = (u_n - u_{n+1})$.

Donc $\sum A_n(u_{n+1}-u_n)$ converge absolument.

2) a) L'existence de l'intégrale résulte de $e^{-t^2}e^{ixt} = O_{\pm\infty}(e^{-t^2})$, car $e^{-t^2} = O_{\pm\infty}\left(\frac{1}{t^2}\right)$.

L'application $f(t,x) = e^{-t^2}e^{ixt}$ est continue et intégrable en t, et de classe C^{∞} en x.

 $\text{D'autre part, } \forall n \in \mathbb{N}, \ \left| \frac{\partial^n f}{\partial x^n}(t,x) \right| = \left| t^n e^{-t^2} e^{ixt} \right| \leq |t|^n \, e^{-t^2} = \varphi_n(t).$

Comme $\varphi_n(t) = O_{\pm \infty}(1/t^2)$, alors φ_n est intégrable sur \mathbb{R} .

On en déduit par le théorème de dérivation des intégrales paramétrées que F est de classe C^{∞} .

b) On a $F'(x) = i \int_{-\infty}^{+\infty} t e^{-t^2} e^{ixt} dt$. Comme $(e^{-t^2})' = -2t e^{-t^2}$, on a par IPP,

$$F'(x) = \frac{i}{2} \left[e^{-t^2} e^{ixt} \right]_{-\infty}^{+\infty} - \frac{1}{2} \int_{-\infty}^{+\infty} x e^{-t^2} e^{ixt} dt = 0 - \frac{1}{2} x F(x) = -\frac{1}{2} x F(x).$$

Sachant $F'(x) = -\frac{1}{2}xF(x)$, on obtient donc $F(x) = \lambda e^{-x^2/4}$, où $\lambda \in \mathbb{R}$, et $\lambda = F(0) = \int_{-\infty}^{+\infty} e^{-t^2} dt = \sqrt{\pi}$.

3) a) La fonction $h:(x,t)\longmapsto \frac{e^{-x^2(1+t^2)}}{1+t^2}$ est de classe C^{∞} sur $[0,+\infty[\times[0,+\infty[$.

Les fonctions $t \mapsto h(x,t)$ sont intégrables sur $[0,+\infty[$, car $h(x,t) \le \frac{1}{1+t^2}$.

Pour tout $\forall x \in [a, b] \subset]0, +\infty[$, $\forall t \geq 0, \left| \frac{\partial h}{\partial x}(t) \right| = 2xe^{-x^2(1+t^2)} \leq 2be^{-\alpha^2(1+t^2)} \leq 2be^{-\alpha^2t^2}\varphi(t)$ intégrable sur $[0, +\infty[$.

Donc f est de classe C^1 sur $]0, +\infty[$, et $f'(x) = -2x \int_0^{+\infty} e^{-x^2(1+t^2)} dt$.

Mais on a ensuite $\int_0^{+\infty} x e^{-x^2(1+t^2)} dt = e^{-x^2} \int_0^{+\infty} e^{-x^2t^2} d(xt) = e^{-x^2} \int_0^{+\infty} e^{-u^2} du = e^{-x^2}$.

Donc $\forall x > 0, \ f'(x) = -2e^{-x^2}G.$

b) On a $\forall x \geq 0$, $\left(\forall t \in]0, +\infty[, 0 \leq \frac{e^{-x^2(1+t^2)}}{1+t^2} \leq \frac{1}{1+t^2} = \varphi(t) \right)$, et φ intégrable sur $]0, +\infty[$.

Le théorème de continuité des intégrales dépendant d'un paramètre, on en déduit f continue sur $[0, +\infty[$.

c) $0 \le f(x) \le e^{-x^2} \int_0^{+\infty} \frac{dt}{1+t^2} \le \frac{\pi}{2} e^{-x^2}$. Donc $\lim_{x \to +\infty} f(x) = 0$ (par pincement).

Autre preuve : Par cv dominée, avec $\forall x \geq 0, \forall t \in]0, +\infty[, 0 \leq \frac{e^{-x^2(1+t^2)}}{1+t^2} \leq \frac{1}{1+t^2} = \varphi(t).$

d) Comme f est continue sur $[0, +\infty[$ et C^1 sur $]0, +\infty[$, on a : $(\lim_{+\infty} f) - f(0) = \int_0^{+\infty} f'(x) \ dx$.

On a $f(0) = \int_0^{+\infty} \frac{dt}{1+t^2} = \frac{\pi}{2}$. D'autre part, $\lim_{t \to \infty} f - f(0) = \int_0^{+\infty} f'(x) dx = -2G^2 2G^2 = \frac{\pi}{2}$.

Comme G > 0, on obtient $G = \frac{1}{2}\sqrt{\pi}$.

4) a) On a, en 0^+ , $\frac{t^{x-1}}{e^t-1} \sim t^{x-2}$, donc $t \mapsto \frac{t^{x-1}}{e^t-1}$ est intégrable sur]0,1], car x-2 > -1.

b) Pour tout t > 0, on a $\frac{t^{x-1}}{e^t - 1} = t^{x-1} \frac{1}{e^t - 1} = t^{x-1} \sum_{n=1}^{+\infty} e^{-nt} = \sum_{n=1}^{+\infty} f_n(t)$, avec $f_n(t) = t^{x-1} e^{-nt}$.

Pour $n \in \mathbb{N}^*$, on a $\int_0^{+\infty} f_n(t) dt = \frac{1}{n^x} \int_0^{+\infty} u^{x-1} e^{-u} du = \frac{\Gamma(x)}{n^x}$.

Pour tout x > 1, on a $\sum_{n=1}^{+\infty} \int_0^{+\infty} |f_n(t)| dt = \sum_{n=1}^{+\infty} \frac{\Gamma(x)}{n^x} = \Gamma(x)Z(x) < +\infty$.

Par ailleurs, $f_n: t \longmapsto t^{x-1}e^{-nt}$ et $S: t \longmapsto \frac{t^{x-1}}{e^t-1}$ sont continues. Donc, par ITT, on a: $\int_0^{+\infty} \frac{t^{x-1}}{e^t-1} dt = \Gamma(x)Z(x)$.

- **5)** a) Pour $0 \le x < 1$, la série converge absolument car $(-1)^n x^{\sqrt{n}} = O_{+\infty}\left(\frac{1}{n^2}\right)$ lorsque n tend vers $+\infty$.
- b) On pose $\forall n \in \mathbb{N}^*, \ \forall x \in [0, 1[, f_n(x) = (-1)^n x^{\sqrt{n}}]$. On a $\int_0^1 |f_n(x)| \ dx = \frac{1}{1 + \sqrt{n}}$.

On ne peut donc pas appliquer le théorème ITT.

On va appliquer le théorème de convergence dominée à $S_n(x) = \sum_{k=0}^n f_k(x)$.

Pour tout $x \in [0, 1[$, la série $\sum f_n(x)$ vérifie le CSSA (en effet, $(x^{\sqrt{n}})_{n \in \mathbb{N}}$ décroît vers 0).

On a $\forall x \in [0, 1[, \lim_{n \to +\infty} S_n(x) = f(x) \text{ et } \forall n \in \mathbb{N}, \forall x \in [0, 1[, 0 \le S_n(x) \le f_0(x) = 1.$

Comme f_0 est intégrable, alors $\lim_{n\to+\infty}\int_0^1 S_n(x)\ dx = \int_0^1 f(x)\ dx$.

Par linéarité, on a donc $\int_0^1 f(x) \ dx = \lim_{n \to +\infty} \sum_{k=0}^n \int_0^1 f_k(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{1 + \sqrt{n}}$.

- **6)** a) Comme $\lim_{x\to+\infty} F(x) = \lambda$, alors $|F(x)| \le |\lambda| + 1$ sur un voisinage $[a, +\infty[$ de $+\infty$, et comme F est continue sur le segment [0, a], alors F est bornée sur $[0, +\infty[$.
- b) L'existence est évidente si x = 0 (par hypothèse). Supposons x > 0.

On a $\int_0^A f(t) \ e^{-xt} \ dt = [F(t)e^{-tx}]_0^A + \int_0^A xF(t) \ e^{-xt} \ dt$. Comme F est bornée, alors $t \longmapsto xF(t) \ e^{-xt}$ est intégrable.

On peut donc faire tendre A vers $+\infty$. D'où l'existence de $L(x)=\int_0^{+\infty}f(t)\ e^{-xt}\ dt$, et $L(x)=\int_0^{+\infty}xF(t)\ e^{-xt}\ dt$.

En effectuant le changement de variable u = xt, on obtient $L(x) = \int_0^{+\infty} F\left(\frac{u}{x}\right) e^{-u} du$.

c) Posons $\forall u > 0, \ \forall x > 0, \ \varphi(u, x) = F\left(\frac{u}{x}\right) e^{-u}.$

On a $|\varphi(u,x)| \leq Me^{-u} = \varphi(u)$ pour tout $u \geq 0$, et d'autre part, $\forall u > 0$, $\lim_{x\to 0} \varphi(u,x) = \lambda$.

Par convergence dominée, on en déduit que $\lim_{x\to 0,x>0} L(x) = \int_0^{+\infty} \lambda e^{-u} du = \lambda$.

6) d) L'application $f: [0, +\infty[\times]0, +\infty[\to \mathbb{C} \ (x,t) \longmapsto \frac{(\sin t)}{t}e^{-xt}$ est de classe C^{∞} .

Pour tout x > 0, la fonction $t \longmapsto f(x,t)$ est intégrable sur $]0,+\infty[$.

En effet, on a $|\sin t| \le t$, donc $|f(x,t)| \le e^{-xt}$ (et comme x > 0, la fonction $t \longmapsto e^{-xt}$ est intégrable).

D'autre part, $\frac{\partial f}{\partial x}(t,x) = -e^{-xt}$. Pour tout $\alpha > 0$, une domination uniforme de $\frac{\partial f}{\partial x}(t,x)$ par rapport à $x \in [\alpha, +\infty[$:

 $\forall x \ge \alpha, \ \forall t \in]0, +\infty[, \ \left| \frac{\partial f}{\partial x}(t, x) \right| \le e^{-\alpha t} = \varphi(t) \text{ intégrable sur }]0, +\infty[.$

Donc I est de classe C^1 sur $]0, +\infty[$, et pour tout x > 0, $I'(x) = -\int_0^{+\infty} (\sin t)e^{-xt} dt = -\operatorname{Im}\left(\int_0^{+\infty} e^{(i-x)t} dt\right) = \operatorname{Im}\left(\frac{1}{i-x}\right) = -\operatorname{Im}\left(\frac{i+x}{x^2+1}\right) = -\frac{1}{x^2+1}.$

d) On en déduit l'existence d'une constante k tel que pour tout x > 0, $I(x) = k - \arctan(x)$.

Pour prouver que $k = \frac{\pi}{2}$, il suffit de prouver que $\lim_{x \to +\infty} I(x) = 0$.

Or, on a
$$|I(x)| \le \int_0^{+\infty} \left| \frac{e^{-xt} \sin t}{t} \right| dt$$
, et comme $\left| \frac{\sin t}{t} \right| \le 1$, on a $|I(x)| \le \int_0^{+\infty} e^{-xt} dt = \frac{1}{x}$.

Donc par pincement, on a $\lim_{x\to+\infty} I(x) = 0$.

Remarque: On peut aussi prouver $\lim_{x\to+\infty}I(x)=0$ en utilisant la cv dominée : $\forall x\geq 1,\, \forall t>0,\, \left|\frac{e^{-xt}\sin t}{t}\right|\leq e^{-t}.$

e) L'application $t \mapsto \frac{\sin t}{t}$ se prolonge par continuité en 0^+ , et $\int_0^{+\infty} \frac{\sin t}{t} dt$ converge.

On peut donc appliquer a) b) c) et en déduire que I est continue en 0.

On en déduit alors avec d) que $I(0) = \lim_{x\to 0, x>0} I(x) = \frac{\pi}{2}$.

7) a) On a $t^2 \exp(-x(\ln t)^2) = \exp(2\ln t - x(\ln t))^2$.

Comme x > 0, on a $\lim_{t \to +\infty} 2 \ln t - x(\ln t) = -\infty$, donc $\exp(2 \ln t - x(\ln t)^2) = \mathfrak{o}_{+\infty}(1)$.

A fortiori, $\exp(-x(\ln t)^2) = O_{+\infty}(1/t^2)$, et ainsi, $t \longmapsto \exp(-x(\ln t)^2)$ est intégrable sur $[1, +\infty[$.

b) On utilise le changement de variable $u \longmapsto t = \exp\left(\sqrt{\frac{u}{x}}\right)$ bijection C^1 de $]0, +\infty[$ sur $]1, +\infty[$.

On obtient

$$I(x) = \frac{1}{2\sqrt{x}}J(x)$$
, où $J(x) = \int_0^{+\infty} \frac{1}{\sqrt{u}} \exp(-u) \exp\left(\sqrt{\frac{u}{x}}\right) du$

On a
$$\lim_{x\to+\infty} J(x) = \int_0^{+\infty} \frac{1}{\sqrt{u}} \exp(-u) \ du = \Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$
. Donc $I(x) \sim_{+\infty} \frac{\lambda}{\sqrt{x}}$, avec $\lambda = \frac{\sqrt{\pi}}{2}$.

En effet, on prend ici comme fonction de domination $\forall x \geq 1$,

$$0 \le \frac{1}{\sqrt{u}} \exp(-u) \exp\left(\sqrt{\frac{u}{x}}\right) \le \frac{1}{\sqrt{u}} \exp(-u) \exp(\sqrt{u}) = \frac{\exp(-u + \sqrt{u})}{\sqrt{u}} = \varphi(u)$$

et φ est intégrable car $\varphi(u) = O\left(\frac{1}{\sqrt{u}}\right)$ en u = 0, et $\varphi(u) = O\left(\frac{1}{u^2}\right)$ en $+\infty$.