Interrogation n°0. Corrigé

1) Supposons par l'absurde que x est rationnel, c'est-à-dire de la forme $x = \frac{p}{q}$, avec p et $q \in \mathbb{N}^*$, car x > 0. On a alors $q \ln 3 = p \ln 2$, d'où $3^q = 2^p$.

Comme p est non nul, 2^p est un entier pair, d'où une contradiction, car 3^q est un entier impair

- (Variante : par unicité de la décomposition en facteurs premiers, on obtient une contradiction).
- 2) a) On a $n = \prod_{i=1}^r p_i^{m_i} \ge 2^{m_1 + m_2 + \dots + m_r}$, donc $m_1 + m_2 + \dots + m_r \le \log n$.

Donc a fortiori, $m_i \leq |\log n|$, puisque que les m_i sont positifs et entiers.

- b) Par a), on a nécessairement $0 \le m_i \le \lfloor \log n \rfloor$. Donc $D_N \le (1 + \lfloor \log N \rfloor)^r \le (1 + \log N)^r$.
- c) Supposons par l'absurde que l'ensemble des nombres premiers est fini, qu'on note $\{p_1, p_2, ..., p_r\}$.

Par croissances comparées de N et de $(\log N)^r$, on a $N > (1 + \log N)^r$ pour N assez grand.

Donc $D_N < N$ pour N assez grand.

Or, on sait que tout entier est produit de nombres premiers, donc $D_N = N$ pour tout N. D'où une contradiction.

- 3) a) On associe à une telle partie A la partie $B = A \setminus \{k+1\}$. Ainsi, B est une partie de cardinal p de $[\![1,k]\!]$. On obtient ainsi une bijection de l'ensemble des parties A sur l'ensemble des parties de cardinal p de $[\![1,k]\!]$. Donc il y a $\binom{k}{p}$ parties A.
- b) Donc $S(p,n) = \sum_{k=0}^{n} {k \choose p} = \sum_{k=p}^{n} {k \choose p}$ est le nombre de parties de E de cardinal p+1, qui sont comptées en les regroupant selon la valeur de leur élément maximum. Donc $\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$.

Remarque: Il s'agit de la formule dite de la crosse de Hockey. S(p,n) représente une somme de coefficients binômiaux situés dans une même colonne du triangle de Pascal :

Par télescopage : $S(p,n) = \sum_{k=p}^{n} \binom{n+1}{k+1} - \binom{n}{k+1} = \binom{n+1}{p+1} - \binom{n}{n+1} = \binom{n+1}{p+1}$.

4) a) Chaque réel y_i appartenant à un (unique) intervalle $J_k = \left\lceil \frac{k-1}{n}(b-a), \frac{k}{n}(b-a) \right\rceil$, où $1 \le k \le n$.

Par le principe des tiroirs, l'un des n intervalles J_k contient au moins deux éléments y_i et y_j , avec $i \neq j$, et quitte à les permuter, on a : $0 \leq y_j - y_i < \frac{b-a}{n}$.

b) On a $\tan\left(\frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$ et $t = \tan\left(\frac{\pi}{12}\right)$ vérifie $\frac{2t}{1-t^2} = \tan\left(\frac{\pi}{6}\right)$, car $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$.

Donc $t^2 + 2\sqrt{3}t - 1 = 0$. Comme t > 0, on obtient $t = -\sqrt{3} + \sqrt{4} = 2 - \sqrt{3}$.

c) On note $x_0, ..., x_{12}$ les réels. On considère $\theta_k = \arctan(x_k) \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$.

On a alors $\frac{x_j - x_i}{1 + x_i x_i} = \frac{\tan(\theta_j) - \tan(\theta_j)}{1 - \tan(\theta_i) \tan(\theta_j)} = \tan(\theta_j - \theta_i).$

Or, par a), il existe i et j distincts tels $0 \le \theta_j - \theta_i < \frac{\pi}{12}$, donc $0 \le \tan(\theta_j - \theta_i) < \tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}$.

- **5)** a) On a $\operatorname{card}(A \cap B) = (\operatorname{card} A) + (\operatorname{card} B) \operatorname{card}(A \cup B)$, et on conclut avec $\operatorname{card}(A \cup B) \leq n$.
- b) Première preuve :

Avec a), on montre d'abord par récurrence sur $p \in \mathbb{N}^*$ que $\operatorname{card}(A_1 \cap A_2 \cap ... \cap A_p) \ge \sum_{i=1}^p \operatorname{card}(A_i) - n(p-1)$.

En effet, la propriété est immédiate pour p=1. Supposons la propriété est vraie au rang p.

On pose $B = A_1 \cap A_2 \cap ... \cap A_p$. Ainsi, $A_1 \cap A_2 \cap ... \cap A_p \cap A_{p+1} = B \cap A_{p+1}$.

D'une part, on applique a) à B et A_{p+1} et d'autre part on applique l'hyp de rec à $B = A_1 \cap A_2 \cap ... \cap A_p$.

On en déduit que $card(B \cap A_{p+1}) \ge (\sum_{i=1}^{p} card(A_i) - n(p-1)) + card(A_{p+1}) - n = \sum_{i=1}^{p+1} card(A_i) - np$.

On peut alors conclure : Si $\sum_{i=1}^{p} \operatorname{card}(A_i) > n(p-1)$, alors $\operatorname{card}(A_1 \cap A_2 \cap ... \cap A_p) \ge 1$, d'où le résultat.

Seconde preuve (sans récurrence): L'idée est d'utiliser les complémentaires (intersection \rightarrow réunion).

On note $\overline{A_i} = E \setminus A_i$ le complémentaire de A_i dans E.

Par hypothèse, on a $\sum_{i=1}^{p} \operatorname{card}(A_i) > n(p-1)$, donc $\sum_{i=1}^{p} \operatorname{card}(\overline{A_i}) < np - n(p-1) = n$.

Donc $\operatorname{card}(\overline{A_1} \cup \overline{A_2} \cup ... \cup \overline{A_p}) \leq \sum_{i=1}^p \operatorname{card}(\overline{A_i}) < n.$

Or, on a $(A_1 \cap A_2 \cap ... \cap A_p) = E \setminus (\overline{A_1} \cup \overline{A_2} \cup ... \cup \overline{A_p})$. Donc $A_1 \cap A_2 \cap ... \cap A_p$ n'est pas vide.

6) Les entiers $S(p) = \sum_{k=1}^{p} k$ forment une suite strictement croissante et S(p+1) - S(p) = p+1.

Les entiers f(n,m) sont exactement les entiers S(p)+m, avec p et m entiers vérifiant $0 \le m \le p$.

Pour p fixé, les entiers S(p)+m, avec $0 \le m \le p$, décrivent l'intervalle [R(p), R(p+1)-1].

Comme \mathbb{N} est la réunion disjointe des [S(p), S(p+1)-1], avec $p \in \mathbb{N}$, alors f est une bijection. Remarque :

on obtient ainsi une bijection très classique de \mathbb{N}^2 sur \mathbb{N} , consistant à leasser les couples (n, m) selon la valeur croissante de n + m, et pour des n + m égaux, selon la valeur croissante de m:

	0	1	2	3	4	m
0	0	2	5	9	7	
1	1	4	8	7		
2	3	7	7			
2 3	6	11	7			
4	10	7				
n	7					

7) a) : (i) \Rightarrow (ii) : Comme 1 vérifie (i), alors nécessairement un des x_k vaut 1.

Donc x_0 vaut 1 puisque la suite $(x_k)_{k\in\mathbb{N}}$ est croissante.

Montrons les inégalités (ii) par contraposition :

Supposons par l'absurde qu'il existe k tel que $x_{k+1} > 1 + \sum_{j=0}^{k} x_j$.

Montrons que $n = 1 + \sum_{j=0}^{k} x_j$ n'a pas de décomposition :

En effet, supposons par l'absurde qu'il existe p et (ε_k) tels que $n = \sum_{k=0}^p \varepsilon_k x_k$.

Comme $x_{k+1} > 1 + \sum_{j=0}^{k} x_j$, on a nécessairement $p \le k$, d'où une contradiction, car $\sum_{k=0}^{p} \varepsilon_k \ x_k \le \sum_{k=0}^{p} x_k < n$.

(ii) \Rightarrow (i) : Posons $S_p = \sum_{j=0}^p x_j$.

La suite $(S_p)_{p\in\mathbb{N}}$ est une suite d'entiers strictement croissante, donc $\lim_{p\to+\infty} S_p = +\infty$.

Montrons par récurrence sur p que tout entier n vérifiant $n \leq S_p$ s'écrit $n = \sum_{k=0}^p \varepsilon_k x_k$, où les $\varepsilon_k \in \{0,1\}$.

La propriété est immédiate pour p = 0, car $x_0 = 1$.

Soit $p \in \mathbb{N}^*$, et supposons la propriété vraie au rang (p-1). Supposons $n \leq S_p$.

- Si $n > x_p$, alors $m = n - x_p \in \mathbb{N}$ vérifie $m \leq S$.

Par hypothèse de récurrence, $m = \sum_{j=0}^{p-1} \varepsilon_j x_j$, donc $n = \sum_{j=0}^p \varepsilon_j x_j$, avec $\varepsilon_p = 1$.

- Si $n < x_p$, alors a fortiori, $n \le S_{p-1}$, donc la propriété résulte de l'hypothèse de récurrence.

Remarque : Une variante consiste à montrer par récurrence forte sur p que tout entier n vérifiant $S_{p-1} < n \le S_p$ s'écrit sous la forme $n = \sum_{j=0}^p \varepsilon_j x_j$, où les $\varepsilon_k \in \{0,1\}$.

7) b) Une CNS pour l'existence est donnée en a), et on la suppose désormais vérifiée.

On a ainsi $x_0 = 1$ et $x_{k+1} \le 1 + \sum_{j=0}^k x_j = 1 + \sum_{j=0}^{k-1} x_j + x_k$, donc $x_{k+1} \le x_k + x_k$, d'où on obtient $x_k \le 2^k$. Ainsi, $S_p \le \sum_{j=0}^k 2^j = 2^{p+1} - 1$.

Supposons qu'il y a pour tout entier n unicité de la décomposition.

Il y a 2^p familles $(\varepsilon_0, ..., \varepsilon_{p-1}) \in \{0, 1\}^p$. Donc il existe 2^p entiers de la forme $n = \sum_{j=0}^{p-1} \varepsilon_j x_j$, où les $\varepsilon_k \in \{0, 1\}$.

Comme ces entiers sont tous $\leq S_{p-1} \leq 2^p - 1$, ces 2^p entiers sont donc exactement les entiers de 0 à S_{p-1} .

Donc $x_p = 1 + S_{p-1}$: en effet, sinon, on aurait $x_p \leq S_{p-1}$ et $x_p = 1.x_p$ admettrait une autre décomposition.

On en déduit donc que $\forall k \in \mathbb{N}, x_k = 2^k$.

Réciproquement, supposons $\forall k \in \mathbb{N}, x_k = 2^k$. Ons ait alors qu'il y a unicité : En effet, cette situation correspond à la décomposition d'un entier en base 2, c'est-à-dire $n = \varepsilon_0 + 2\varepsilon_1 + 4\varepsilon_2 + \dots$

On en conclut qu'il y a unicité ssi $\forall k \in \mathbb{N}$, $x_k = 2^k$ (ce qui correspond au cas d'égalité dans les inégalités de (ii)).

8) La suite n'étant pas majorée, il existe $p \in \mathbb{N}$ tel que $u_p \leq a$.

Considérons $A = \{n \geq p \mid a < u_n\}$. Comme la suite n'est pas minorée, A n'est pas vide.

Posons $m=\min A$. Comme $u_p\leq a,$ alors $m>p\geq 0.$ Comme $m-1\notin A$ et $m-1\geq p,$ on a $u_{m-1}\leq a.$

On a donc bien $u_{m-1} \le a < u_m$.