Exercice A. Nombre d'essais nécessaires pour retrouver une valeur déjà obtenue [6 pts]

Soit E un ensemble fini de cardinal n. Soit $(X_j)_{j\geq 1}$ des variables i.i.d qui suivent la loi uniforme sur E.

On note A_k l'événement : " $X_1, X_2, ..., X_k$ sont deux à deux distincts ". On note $\overline{A_k} = \Omega \setminus A_k$.

On a
$$\Omega = A_0 = A_1 \supset A_2 \supset ... \supset A_n \supset A_{n+1} = \emptyset$$
. On pose $T = \min\{k \in \{2, ..., n+1\} \mid \overline{A_k}\}$

1) a) [0.5 pt] Justifier que (T > k) est un événement. Ainsi T est une variable aléatoire.

b) [2 pts] Pour
$$k \in \mathbb{N}$$
, évaluer $P(T > k)$. En déduire que $E(T) = \frac{n!}{n^n} \sum_{k=0}^n \frac{n^k}{k!}$.

2) [1 pt] On pose
$$I_n = \frac{n!}{n^n} \sum_{k=0}^n \frac{n^k}{k!}$$
. Montrer que $I_n = \int_0^{+\infty} \left(1 + \frac{x}{n}\right)^n e^{-x} dx$.

On en déduit (admis ici) que
$$I_n = \sqrt{n}J_n$$
, où $J_n = \int_0^{+\infty} \left(1 + \frac{t}{\sqrt{n}}\right)^n e^{-\sqrt{n}t} dt$.

3) [1 pt] On pose
$$\forall n \in \mathbb{N}^*, \forall t \in [0, +\infty[, f_n(t) = n \ln\left(1 + \frac{t}{\sqrt{n}}\right) - \sqrt{n}t.$$

Montrer que
$$f_n''(t) \le f_1''(t)$$
. En déduire $\left(1 + \frac{t}{\sqrt{n}}\right)^n e^{-\sqrt{n}t} \le (1+t)e^{-t}$.

4) [1.5 pt] Montrer que
$$\lim_{n\to+\infty} J_n = \int_0^{+\infty} e^{-t^2/2} dt$$
.

Epilogue culturel: On sait que
$$\int_0^{+\infty} e^{-t^2/2} dt = \sqrt{\frac{\pi}{2}}$$
. On en déduit donc $I_n \sim \sqrt{\frac{\pi n}{2}}$.

Exercice B Etude d'une série de fonctions [4 pts]

Soit $\varphi:[0,+\infty[\to\mathbb{R}$ une fonction de classe C^1 . vérifiant $\varphi(0)=0$ et $\varphi'(0)>0$.

1) [0.5 pt] Montrer qu'il existe a > 0 tel que φ est croissante et positive sur [0, a].

2) [1.5 pt] Soit
$$x \ge 0$$
. Justifier l'existence de $f(x) = \sum_{n=1}^{+\infty} (-1)^n \varphi\left(\frac{x}{n}\right)$.

3) [2 pts] Montrer que f est continue sur $[0, +\infty[$.

Exercice C. Variables aléatoires décomposables [6.5 pts]

Rappel: On note $X \sim Y'$ pour signifier que les deux v.a. X et Y ont même loi.

On pourra utiliser les deux propriétés suivantes supposées connues (et au programme officiel) :

Propriété 1 : Etant données N variables aléatoires $Y_1, ..., Y_N$, il existe un espace probabilisé (Ω, T, P) et N variables aléatoires $X_1, ..., X_N$ mutuellement indépendantes telles que pour tout $k \in [\![1,N]\!], X_k \sim Y_k$.

Propriété 2 : Etant donnée une suite de réels positifs $(a_n)_{n\in\mathbb{N}}$ vérifiant $\sum_{n=0}^{+\infty}a_n=1$, il existe une variable aléatoire $X:\Omega\to\mathbb{N}$ telle que $\forall n\in\mathbb{N},\ P(x=n)=a_n,$ c'est-à-dire $\forall t\in[-1,1],\ G_X(t)=\sum_{n=0}^{+\infty}a_nt^n.$

Soit X une variable aléatoire entière (c'est-à-dire à valeurs dans \mathbb{N}). On dit que X est décomposable ssi il existe deux variables aléatoires entières indépendantes et non nulles Y et Z telles que $X \sim (Y + Z)$.

- 1) [2 pts] Montrer que les assertions suivantes sont équivalentes :
- (i) X est décomposable
- (ii) G_X est le produit sur [-1,1] de deux séries entières non constantes et à coefficients positifs.
- 2) [1 pt] Soient $n \ge 2$ et $p \in]0,1[$. On suppose : $X \hookrightarrow \mathcal{B}(n,p)$ loi binomiale. Montrer que X est décomposable.
- 3) [1 pt] Soit $\lambda > 0$. On suppose : $X \hookrightarrow \mathcal{P}(\lambda)$ loi de Poisson. Montrer que X est décomposable.
- 4) [1 pt] On suppose que X suit la loi uniforme sur $\{0, 1, 2, 3, 4, 5\}$.

Expliciter $G_X(t)$. Montrer que X est décomposable (ind : utiliser l'écriture $t^k=t^{3q}t^r$, avec $r\in\{0,1,2\}$).

5) [1.5 pt] Donner la factorisation dans $\mathbb{R}[t]$ du polynôme $1 + t^4$ en produit de facteurs irréductibles. En déduire l'existence d'une v.a. non nulle qui n'est pas décomposable.

Exercice D. Logarithme d'une série entière [7 pts] (extrait Mines PSI)

Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ une série entière non constante de rayon R > 0 et vérifiant $a_0 = 1$.

1) [1 pt] Montrer qu'il existe une unique suite $(b_n)_{n\in\mathbb{N}}$ vérifiant $b_0=0$ et

$$\forall n \in \mathbb{N}^*, \quad na_n = \sum_{k=0}^n kb_k a_{n-k}$$

- 2) Soit $0 < \rho < R$. Posons $S_n(\rho) = \sum_{k=0}^n |b_k| \rho^k$ et $\Delta(\rho) = \sum_{n=0}^{+\infty} |a_n| \rho^n > 1$.
- a) [0.5 pt] Montrer que $|b_n| \le |a_n| + \sum_{k=0}^{n-1} |b_k a_{n-k}|$.
- b) [1.5 pt] Montrer que $S_n(\rho) \leq \Delta(\rho) + \Delta(\rho)S_{n-1}(\rho)$.
- c) [1 pt] En déduire que $1 + S_n(\rho) \leq \frac{\Delta(\rho)^{n+1} 1}{\Delta(\rho) 1}$.
- 3) [1.5 pt] Montrer que $\sum b_n x^n$ admet un rayon de convergence R' > 0. On pose $g(x) = \sum_{n=0}^{+\infty} b_n x^n$.
- 4) [1.5 pt] En utilisant une équation différentielle, montrer que $\forall |x| < \min(R, R'), \ f(x) = \exp(g(x)).$