Interrogation n°9 bis (polynômes d'endomorphismes)

1) (\clubsuit) Soit $A \in \mathcal{M}_n(\mathbb{C})$ une matrice complexe. On suppose que A est semblable à 2A

Montrer que A est nilpotente.

Remarque culturelle: En fait, la réciproque est vraie. Facile à justifier en dimension 2:

N est semblable à $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, donc (cf cours), les matrices N et 2N sont semblables.

2) (\clubsuit) a) Donner une CNS pour qu'un produit de matrices carrées $M_1...M_p$ soit inversible.

b) Soit
$$P = (X - \lambda_1)...(X - \lambda_p) \in K[X]$$
 et $A \in \mathcal{M}_n(K)$.

Montrer que P(A) est inversible ssi aucun des λ_i n'est valeur propre de A.

c) Soient $A, B, M \in \mathcal{M}_n(\mathbb{C})$ telles que AM = MB et M non nulle.

Montrer que pour tout polynôme $P \in \mathbb{C}[X]$, P(A)M = MP(B). En déduire $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) \neq \emptyset$.

- 3) a) Soit $N \in \mathcal{M}_n(\mathbb{C})$ une matrice nilpotente. Montrer que $\forall k \in \mathbb{N}^*$, tr $N^k = 0$.
- b) Réciproquement, soit $A \in \mathcal{M}_n(\mathbb{C})$.

On note $\lambda_1,...,\lambda_p$ les racines non nulles de χ_A et on note $m_1,...,m_p$ les ordres de multiplicité.

On considère L le polynôme (de Lagrange) vérifiant L(0) = 0 et $\forall j \in [1, p], L(\lambda_j) = 1$.

On considère la matrice L(A). Exprimer tr(L(A)) en fonction des m_i .

En déduire que si $\forall k \in \mathbb{N}^*$, tr $A^k = 0$, alors A est nilpotente.

- 4) Soit $n \in \mathbb{N}^*$.
- a) (\clubsuit) Soit u un endomorphisme d'un \mathbb{C} -espace vectoriel E de dimension n.

Montrer qu'il existe une droite vectorielle D stable par u.

b) (\bigstar) Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension n.

On suppose qu'il n'existe aucune droite stable par u.

En utilisant χ_u montrer qu'il existe a et $b \in \mathbb{R}$ tels que $u^2 - au - b$ Id n'est pas inversible.

En déduire qu'il existe un plan stable par u.

5) (\bigstar) Soit $u \in \mathcal{L}(E)$ tel que $u^3 = u^2$. Autrement dit, $X^2(X-1)$ annule u.

Montrer que $Ker(u^2) \oplus Ker(u - Id) = E$.

Exemple:
$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 vérifie $A^3 = A^2$. On a $\operatorname{Ker} A^2 = \operatorname{Vect}(e_1, e_2)$ et $\operatorname{Ker}(A - I_3) = Ke_3$.

Remarque: En fait, toute matrice $M \in \mathcal{M}_3(\mathbb{C})$ vérifiant $M^3 = M^2$ qui n'est pas diagonalisable et qui admet à la fois 0 et 1 comme valeurs propres est semblable à cette matrice.A.

Corrigé

1) Supposons (i). On a $\operatorname{Sp}(2A) = 2\operatorname{Sp}(A)$, donc $\operatorname{Sp}(A)$ est globalement invariant par $\lambda \longmapsto 2\lambda$.

S'il existait une valeur propre non nulle λ , alors $\forall n \in \mathbb{N}, \, 2^k \lambda$ serait valeur propre.

Or, il y a un nombre fini de valeurs propres. Donc 0 est la seule valeur propre.

En trigonalisant A, on en déduit que A est semblable à une matrice triangulaire supérieure stricte, donc A est nilpotente.

2) a) On a $\det(M_1...M_p) = \det(M_1)...\det(M_j)$.

Donc $M_1...M_p$ est inversible ssi tous les M_j sont inversibles (déterminants non nuls)

b) On a $P(A) = M_1...M_p$, où $M_j = A - \lambda_j \operatorname{Id}$.

Par a), P(A) est inversible ssi les M_j sont inversibles, donc ssi les λ_j ne sont pas valeurs propres de A.

c) On a pour $k \in \mathbb{N}^*$, $A^k M = A^{k-1} M B$ et on conclut $A^k M = M B^k$ par récurrence sur $k \in \mathbb{N}$.

Par linéarité du produit matriciel, on obtient P(A)M = MP(B).

Considérons $P = \chi_A$. On a $P(A) = O_n$.

Supposons $\operatorname{Sp}(A) \cap \operatorname{Sp}(B) = \emptyset$. Par b), P(B) est inversible. Donc $M = O_n$ d'où une contradiction.

3) a) N est semblable à une matrice triangulaire supérieure stricte T.

Pour $k \ge 1$, T^k est triangulaire supérieure stricte. Donc $\operatorname{tr}(A^k) = \operatorname{tr}(T^k) = 0$.

b) A est semblable à une matrice triangulaire supérieure, avec des 0 et des λ_j sur la diagonale.

On en déduit $tr(A^k) = (n-m)0 + m_1\lambda_1^k + ... + m_p\lambda_p^k$, où $m = m_1 + ... + m_p$.

Donc $tr(L(A)) = (n - m)L(0) + m_1L(\lambda_1) + ... + m_pL(\lambda_p) = m + ... + m_p$.

Si on suppose $\forall k \in \mathbb{N}^*$, $\operatorname{tr}(A^k) = 0$, alors $\operatorname{tr}(P(A)) = 0$ pour tout polynôme vérifiant P(0) = 0, c'est-à-dire dans ce cas, P est combinaison linéaire de X, X_2, X^3, \dots

C'est le cas du polynôme L, donc tr(L(A)) = 0, et ainsi tous les j sont nuls.

Donc 0 est la seule valeur propre de A, c'est-à-dire A nilpotente.

4) a) Le polynôme caractéristique admet au moins une racine λ .

Il existe donc x non nul tel que $u(x) = \lambda x$, et ainsi $D = \mathbb{C}x$ est stable par u.

Remarque: Pour $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, il existe une unique droite stable par A (engendrée par e_1).

b) Notons $\chi_u = P_1 P_2 ... P_r$ la décomposition de χ_u en facteurs irréductibles dans $\mathbb{R}[X]$.

Comme u n'a pas de droite stable, χ_u n' a pas de racine réelle et les P_j sont irréductibles de degré 2.

On a donc $P_1(u) \circ ... \circ P_r(u) = 0$. Donc il existe au moins un j tel que det $P_j(u) = 0$.

Posons $P_j(x) = x^2 - ax - b$. Il existe donc un vecteur non nul $x \in \text{Ker } P_j(u)$.

Alors F = Vect(x, u(x)) est stable par u, car $u^2(x) \in F$, et F est un plan car $u(x) \notin \mathbb{C}x$.

Remarque culturelle : On peut aussi prouver l'existence d'un plan stable en considérant une matrice réelle A représentant u. Alors il existe $Z \in \mathbb{C}^n$ non nul et $\lambda = \alpha + i\beta \in \mathbb{C}$ non réel tels que $AZ = \lambda Z$, et en posant Z = X + iY, on obtient $\mathrm{Vect}(X,Y)$ plan réel stable, car $AX = \alpha X - \beta Y$ et $AY = \alpha Y + \beta X$.

5) a) (analyse) On suppose $x = y + z \in \text{Ker}(u^2) \oplus \text{Ker}(u - \text{Id})$.

Alors u(z)=z et $u^2(y)=0$, donc nécessairement $z=u^2(x)$ et $y=x-u^2(x)$. D'où l'unicité.

 $(synth\grave{e}se)$ On prend donc le seul candidat possible : $y=x-u^2(x)$ et $z=u^2(x)$. On a bien x=y+z.

Comme $u^3 = u^2$, on a u(z) = z. Comme on a $u^4 = u^3 = u^2$, alors $u^2(y) = u^2(x) - u^4(x) = 0$.

Donc $Ker(u^2) \oplus Ker(u - Id) = E$.