Interrogation n°4. Corrigé.

1) a) Pour
$$\alpha > 1$$
, on a $\frac{1}{t^{\alpha}(\ln t)} = O_{+\infty}\left(\frac{1}{t^{\alpha}}\right)$, donc l'intégrale converge.

Pour
$$\alpha = 1$$
, avec $u = \ln t$, $\int_e^{+\infty} \frac{dt}{t \ln t} = \int_1^{+\infty} \frac{du}{u} = [\ln u]_1^{+\infty} = +\infty$.

Pour $\alpha < 1$, alors $\forall t \geq e$, $\frac{1}{t^{\alpha}(\ln t)} \geq \frac{1}{t \ln t}$, d'où la divergence. D'où la CNS : $\alpha > 1$.

b) En 1, avec
$$t=1+h$$
, on a $\frac{(\ln t)^{\alpha}}{(t-1)^{3/2}}\sim\frac{h^{\alpha}}{h^{5/2}}$. Donc $\int_1^2\dots$ converge ssi $\alpha>\frac{3}{2}$.

En
$$+\infty$$
, $\frac{(\ln t)^{\alpha}}{(t-1)^{3/2}} \sim \frac{(\ln t)^{\alpha}}{t^{5/2}} = O_{+\infty}\left(\frac{1}{t^2}\right)$. Donc $\int_2^{+\infty}$... converge. D'où la CNS : $\alpha > \frac{3}{2}$.

2) On a
$$J(n)=K(n,n)$$
, avec $K(n,m)=\int_0^1 t^n (\ln t)^m dt$

En intégrant par parties, on a
$$K(n,m) = \frac{-m}{n+1} \int_0^1 t^n (\ln t)^{m-1} dt = \frac{-m}{n+1} K(n,m-1)$$
 pour $m \in \mathbb{N}^*$.

Remarque : En toute rigueur, il faut faire une IPP sur des segments $[\varepsilon, 1]$, puis on fait $\varepsilon \to 0^+$.

Donc
$$K(n,n) = \frac{(-1)^n n!}{(n+1)^n} K(n,0) = \frac{(-1)^n n!}{(n+1)^{n+1}}$$
, car $K(n,0) = \int_0^1 t^n dt = \frac{1}{n+1}$.

Variante: Avec
$$t = e^{-u}$$
, on a: $J(n) = (-1)^n \int_0^{+\infty} e^{-(n+1)u} u^n du = \frac{(-1)^n}{(n+1)^{n+1}} \int_0^1 e^{-y} y^n dy = \frac{(-1)^n n!}{(n+1)^{n+1}}$.

3) a) On a par IPP:
$$\int_1^x \frac{\cos t}{t^{\alpha}} dt = \left[\frac{\sin t}{t^{\alpha}} \right]_1^x - \alpha \int_1^x \frac{\sin t}{t^{\alpha+1}} dt.$$

Or,
$$\frac{\sin t}{t^{\alpha+1}} = O_{+\infty}\left(\frac{1}{t^{\alpha+1}}\right)$$
 et $(\alpha+1) > 1$, donc $t \longmapsto \frac{\sin t}{t^{\alpha+1}}$ est intégrable (par comparaison).

Donc $J(\alpha)$ existe et vaut $\sin 1 - \int_1^{+\infty} \frac{\sin t}{t^{\alpha+1}} dt$.

b) Pour
$$K(\beta)$$
, on utilise le changement de variable $u = t^{\beta}$, c'est-à-dire $t = u^{1/\beta}$ et $dt = \frac{1}{\beta}u^{1/\beta-1}$.

D'où
$$\int_1^x \cos(t^\beta) dt = \frac{1}{\beta} \int_1^{x^\beta} \frac{\cos(u)}{u^{1-1/\beta}} du$$
 qui tend vers $\frac{1}{\beta} J(\alpha)$ lorsque $x \to +\infty$, avec $\alpha = 1 - \frac{1}{\beta} > 0$.

Donc $K(\beta)$ converge.

4) a) On a
$$0 \le G(x) \le \int_x^{+\infty} \frac{e^{-t}}{x\sqrt{t}} dt = \frac{1}{x} F(x)$$
, donc $G(x) = \mathfrak{o}_{+\infty}(F(x))$.

b) Par intégration par parties,
$$F(x) = \frac{e^{-x}}{\sqrt{x}} - \frac{1}{2}G(x)$$
, et comme $G(x) = \mathfrak{o}_{+\infty}(F(x))$, alors $F(x) \sim_{+\infty} \frac{e^{-x}}{\sqrt{x}}$.

c) Avec le changement de variable
$$t = \sqrt{u}$$
, on a $R(x) = \frac{1}{2} \int_{x^2}^{+\infty} \frac{e^{-u}}{\sqrt{u}} du = \frac{1}{2} F(x^2)$.

Donc
$$R(x) \sim_{+\infty} \frac{e^{-x^2}}{2x}$$
.

Remarque: On pourrait aussi faire directement une IPP sur R(x) en considérant la décomposition

$$e^{-x^2} = \frac{1}{2x} \times (2xe^{-x^2}) = \frac{-1}{2x} \times (e^{-x^2})'$$

5) a) En
$$t = 0^+$$
, on a $t^{x-1}e^{-t} \sim t^{x-1}$, donc $I(x)$ existe ssi $x - 1 > -1$, c'est-à-dire $x > 0$.

b) On sait par convexité de exp que $e^u \le 1 + u$ pour tout $u \in \mathbb{R}$. Donc $\forall t \in [0, 1], 1 - t \le e^{-t}$.

Par ailleurs, $e^{-t} \le 1$ pour tout $t \ge 0$.

Ainsi,
$$\forall t \in]0,1], t^{x-1} - t^x \le t^{x-1}e^{-t} \le t^{x-1}, \text{ donc } \frac{1}{x} - \frac{1}{x+1} \le I(x) \le \frac{1}{x}, \text{ d'où } I(x) \sim \frac{1}{x} \text{ en } x = 0^+.$$

6) On a
$$f_n(y) \le f(y) = 0 = f_n(x_n)$$
, donc $y \le x_n$.

Soit $\varepsilon > 0$ (et de sorte que $y + \varepsilon \in I$). Il reste à prouver que $x_n \leq y + \varepsilon$ pour n assez grand.

Or, $\lim_{n\to+\infty} f_n(y+\varepsilon) = f(y+\varepsilon) > 0$, donc $f_n(y+\varepsilon) > 0$ pour n assez grand.

On en déduit que $x_n \leq y + \varepsilon$ pour n assez grand.

b) Ici,
$$f_n(x) = 1 + x + x^2 + ... + x^n - 2$$
 et $f(x) = \frac{1}{1 - x} - 2$ définies sur $[0, 1[$ (en prenant $n \ge 2)$.

On en déduit $\lim_{n\to+\infty} x_n = y$, où f(y) = 0, c'est-à-dire $y = \frac{1}{2}$.

7) a)
$$R(x) = K - \int_0^x f(t)dt$$
. Par le th fondamental, R est de classe C^1 et $R'(x) = -f(x)$.

b) L'application R est strictement decroissante et est une bijection de classe C^1 de $[0, +\infty[$ sur]0, K].

On effectue le changement de variable u = R(t). On a du = -f(t) dt.

Donc
$$\int_0^{+\infty} \frac{f(t) dt}{R(t)^{\alpha}} = \int_0^K \frac{du}{u^{\alpha}}$$
 qui converge ssi $\alpha < 1$.

c) On a
$$|R(x)| \le \int_x^{+\infty} \left| \frac{g(t)}{t} \right| dt \le \frac{1}{x} \int_x^{+\infty} |g(t)| dt \mathfrak{o}_{+\infty} \left(\frac{1}{x} \right)$$
 car g intégrable.

On a par IPP,
$$\int_0^x R(t) dt = [tR(t)]_0^x - \int_0^x tR'(t) dt = xR(x) + \int_0^x tf(t) dt = xR(x) + \int_0^x g(t) dt$$
.

En faisant tendre x vers $+\infty$, on obtient bien : $\lim_{x\to+\infty} \int_0^x R(t) dt$ existe et vaut $\int_0^{+\infty} g(x) dx$.

8) a) En
$$0^+$$
, $\frac{1}{e^{\sqrt{t}}-1} \sim \frac{1}{\sqrt{t}}$ (car $e^x-1 \sim x$) et en $+\infty$, $\frac{1}{e^{\sqrt{t}}-1} \sim e^{-\sqrt{t}} = O_{+\infty}\left(\frac{1}{t^2}\right)$. Donc l'intégrale converge.

b) On a
$$\int \frac{\sin(t)\ln(t)}{t} du = -\cos(t)\frac{\ln(t)}{t} - \int \frac{\cos(t)\ln(t)}{t^2} dt + \int \frac{\cos(t)}{t^2} dt$$
.

Les fonctions
$$\frac{\cos(t)\ln(t)}{t^2}$$
 et $\frac{\cos(t)}{t^2}$ sont intégrables sur $[1, +\infty[$, car en $O_{+\infty}(\frac{1}{t^{3/2}})$.

Et
$$\cos(t)\frac{\ln(t)}{t}$$
 converge bien en $+\infty$ (vers 0). Donc $\int_1^{+\infty}\frac{\sin(t)\ln(t)}{t} dt$ existe.

D'autre part, lorsque
$$t$$
 tend vers 0^+ , $\frac{\sin(t)\ln(t)}{t} = O(\ln t)$, donc $O\left(\frac{1}{t^{1/2}}\right)$ donc est intégrable sur $]0,1]$.

On en déduit que $\int_0^{+\infty} \frac{\sin(t) \ln(t)}{t} dt$ existe.

9) a) Avec
$$x = \tan t$$
, on a $(\sin t)^2 = 1 - (\cos)^2 = 1 - \frac{1}{1+x^2} = \frac{x^2}{1+x^2}$ et $dt = \frac{dx}{1+x^2}$.

D'où
$$I(a) = \int_0^{\pi/2} \frac{dt}{1 + a(\sin t)^2} dt = \int_0^{+\infty} \frac{1}{1 + ax^2/(1 + x^2)} \frac{dx}{1 + x^2} = \int_0^{+\infty} \frac{dx}{1 + (1 + a)x^2} = \frac{\pi}{2\sqrt{a+1}}.$$

En effet,
$$\int \frac{dx}{1+(1+a)x^2} = \frac{1}{\sqrt{a+1}} \int \frac{\sqrt{a+1}}{1+(1+a)x^2} = \frac{1}{\sqrt{a+1}} \int \frac{dy}{1+y^2}$$
, avec $y = \sqrt{a+1} x$.

b)
$$u_n = \int_{n\pi}^{(n+1)\pi} \frac{dt}{1 + t^4(\sin t)^2} \le \int_{n\pi}^{n\pi + \pi} \frac{dt}{1 + (n\pi)^4(\sin t)^2} = \int_0^{\pi} \frac{dt}{1 + (n\pi)^4(\sin t)^2}$$
, car $\sin^2 \cot \pi$ -périodique.

Comme
$$\sin(\pi - t) = \sin(t)$$
, alors $u_n \le 2 \int_0^{\pi/2} \frac{dt}{1 + (n\pi)^4 (\sin t)^2}$.

Par a), on a donc
$$u_n \leq \frac{\pi}{\sqrt{(n\pi)^4 + 1}}$$
, et ainsi $u_n = O\left(\frac{1}{n^2}\right)$. Donc $\sum u_n$ converge et l'intégrale converge.