Interrogation n°25 bis. Corrigé

Exercice A

Soit $f:[0,1]\to\mathbb{R}$ de classe C^1 . On considère $u_n=\prod_{k=1}^n f\left(\frac{1}{k}\right)$. On note R le rayon de convergence de $\sum u_n x^n$.

1) i)
$$u_n = \alpha^n$$
 et $R = \frac{1}{|\alpha|}$ (Remarque : Valeur absolue !) ; ii) $u_n = \frac{\alpha^n}{n!}$ et $R = +\infty$ (car $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = 0$).

iii)
$$u_n = \prod_{k=1}^n \left(\frac{p}{k} - 1\right) = \frac{(p-1)(p-2)...(p-n)}{n!} = \binom{p-1}{n}$$
. Remarque: $u_n = 0$ si $n \ge p$.

La série entière est donc ici un polynôme et a fortiori $R = +\infty$.

- 2) a) Par continuité de f en 0, on a f(t) > 0 pour t sur un voisinage de 0, donc $f\left(\frac{1}{k}\right) > 0$ pour k assez grand.
- b) On a $\lim_{n\to+\infty} \left| \frac{u_{n+1}}{u_n} \right| = |f(0)| < 1$, donc $\sum u_n$ converge par le critère de D'Alembert.

Rappel: La preuve consiste à choisir r tel que |f(0)| < r < 1 et à noter que $|f(\frac{1}{k})| \le r$ pour $k \ge k_0$ assez grand.

On en déduit que $|u_n| \leq Mr^{k-k_0}$, donc $u_n = O(r^n)$, donc $\sum |u_n|$ converge (par comparaison avec $\sum r^n$).

- c) Par le même argument, $\sum u_n$ diverge.
- 3) a) On cherche à évaluer asymptotiquement w_n (donc v_n). Pour les séries, on utilise des DL en grand O(...):

On a
$$\frac{v_n}{v_{n-1}} = \frac{u_n}{u_{n-1}} \left(\frac{n-1}{n}\right)^{\beta} = f\left(\frac{1}{n}\right) \left(1 - \frac{1}{n}\right)^{\beta}.$$

Or,
$$f\left(\frac{1}{n}\right) = 1 + \frac{\beta}{n} + O\left(\frac{1}{n^2}\right)$$
 et $\left(1 - \frac{1}{n}\right)^{\beta} = 1 - \frac{\beta}{n} + O\left(\frac{1}{n^2}\right)$. Donc $\frac{v_n}{v_{n-1}} = 1 + O\left(\frac{1}{n^2}\right)$, et $w_n = O\left(\frac{1}{n^2}\right)$.

On en conclut que $\sum w_n$ converge (absolument).

- b) Comme $w_n = \ln(v_n) \ln(v_{n-1})$, alors la suite $(\ln(v_n))_{n \in \mathbb{N}}$ converge.
- On pose $\lambda = \lim_{n \to +\infty} \ln(v_n)$. Par continuité de exp, on a : $\lim_{n \to +\infty} v_n = L$, avec $L = e^{\lambda} > 0$. Donc $u_n \sim L n^{\beta}$.
- c) En particulier, $\lim_{n\to+\infty} \left| \frac{u_{n+1}}{u_n} \right| = 1$, donc R = 1.

Le domaine de convergence contient]-1,1[et est inclus dans [-1,1].

Les seuls cas problématiques sont donc ceux associés à x=1 et x=-1.

- Pour x = 1: La suite $(u_n)_{n \in \mathbb{N}}$ est positive (car f > 0), donc $\sum u_n$ converge ssi $\sum n^{\beta}$ converge, donc ssi $\beta < -1$.
- Pour x=-1, la situation est plus compliquée, car il s'agit d'étudier la série $\sum (-1)^n u_n$.

On va utiliser notamment le critère spécial des séries alternées.

En effet, si $\beta \geq 0$, la suite $(u_n)_{n \in \mathbb{N}}$ ne tend pas vers 0, donc $\sum (-1)^n u_n$ diverge.

Si $\beta < 0$, $(u_n)_{n \in \mathbb{N}}$ tend vers 0. De plus, on a f'(0) < 0, donc f(t) < 1 pour t > 0 assez petit.

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante à partir d'un certain rang. On en déduit que $\sum (-1)^n u_n$ converge.

Exercice B. Fonction de Bessel

1) Posons
$$u_n = (-1)^n \frac{x^{2n}}{4^n (n!)^2}$$
. On a $\lim_{n \to +\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to +\infty} \frac{|x|^2}{4(n+1)^2} = 0$.

Par d'Alembert, $\sum u_n$ converge pour toute valeur de x. Donc $R = +\infty$.

2) Soit $y(x) = \sum_{n=0}^{+\infty} a_n x^n$ une fonction définie par une série entière de rayon de convergence R > 0.

Pour
$$|x| < R$$
, on a: $(xy'' + y') + xy = \sum_{n=0}^{+\infty} (n(n+1) + n + 1)a_{n+1}x^n + \sum_{n=1}^{+\infty} a_{n-1}x^n = 0$.

Une série entière s'annule sur]-R,R[ssi tous les coefficients de la série sont nuls.

Donc y vérifie (E) ssi
$$a_1 = 0$$
 et $\forall n \ge 1, \ a_{n+1} = -\frac{1}{(n+1)^2} a_{n-1}$.

Donc
$$a_n = 0$$
 si n est impair, et si $n = 2m$ est pair, $a_n = \frac{(-1)^m}{2^2 \cdot 4^2 \cdot \dots \cdot (2m)^2} a_0 = \frac{(-1)^m}{4^m (m!)^2} a_0$.

En imposant de plus $a_0 = 1$, on obtient bien comme unique solution $J(x) = \sum_{m=0}^{+\infty} (-1)^m \frac{x^{2m}}{4^n (m!)^2}$.

3) Posons
$$K(x) = \frac{1}{2\pi} \int_0^{2\pi} \exp(ix \cos \theta) \ d\theta$$
.

- On a bien
$$K(0) = 1$$
.

- Montrons que K est développable en série entière sur \mathbb{R} . On fixe $x \in \mathbb{R}$.

Par le DSE de exp, on a :
$$\forall x \in [0, 2\pi], \exp(ix \cos \theta) = \frac{1}{2\pi} \sum_{n=0}^{+\infty} \frac{(ix \cos \theta)^n}{n!}.$$

La série de fonctions
$$\sum_{n=0}^{+\infty} \frac{(ix\cos\theta)^n}{n!}$$
 converge normalement sur le segment $[0,2\pi]$.

En effet,
$$\sup_{\theta \in [0,2\pi]} \left| \frac{(ix \cos \theta)^n}{n!} \right| = \frac{|x|^n}{n!}$$
, et la série $\sum \frac{|x|^n}{n!}$ converge (vers $\exp(|x|)$).

Donc
$$K(x) = \frac{1}{2\pi} \sum_{n=0}^{+\infty} \int_0^{2\pi} \frac{(ix \cos \theta)^n}{n!} d\theta = \sum_{n=0}^{+\infty} \frac{a_n x^n}{n!}$$
, où $a_n = \frac{i^n}{2\pi} \int_0^{2\pi} (\cos \theta)^n d\theta$.

Et K est bien DSE sur \mathbb{R} .

- Pour montrer finalement que K(x) = J(x), il y a deux méthodes : soit on calcule les a_n (variante des intégrales de Wallis) soit on montre (via les intégrales paramétrées) que K vérifie l'équation différentielle (E) :

Première méthode:

Posons
$$\omega_n = \int_0^{2\pi} (\cos \theta)^n d\theta$$
.

On vérifie par une IPP que
$$\forall n \geq 2$$
, $a_n = (n-1) \int_0^{2\pi} (\cos \theta)^{n-2} (\sin \theta)^2 d\theta = (n-1)(a_{n-2} - a_n)$.

Donc
$$\forall n \ge 2$$
, $a_n = \frac{n-1}{n} a_{n-2}$. Or, $a_0 = 1$ et $a_1 = 0$.

Donc
$$a_n = \frac{1 \times 3 \times ... \times (2m-1)}{2 \times 4 \times ... \times (2m)} = \frac{(2m)!}{4^m (m!)^2}$$
 si $n = 2m$ pair, et $a_n = 0$ si n impair.

On retrouve donc bien :
$$K(x) = \sum_{m=0}^{+\infty} \frac{(-1)^m}{4^m (m!)^2} x^{2m}$$
.

Seconde méthode:

Posons $\forall x \in \mathbb{R}, \forall \theta \in [0, 2\pi], f(x, \theta) = \exp(ix \cos \theta)$.

On a
$$\forall x \in \mathbb{R}$$
, $\left| \frac{\partial f}{\partial x}(x, \theta) \right| = |i \cos \theta \exp(ix \cos \theta)| \le 1 = \varphi(\theta)$, avec φ intégrable sur $[0, 2\pi]$.

De même
$$\forall x \in \mathbb{R}, \left| \frac{\partial^2 f}{\partial x^2}(x, \theta) \right| = \left| -(\cos \theta)^2 \exp(ix \cos \theta) \right| \le 1 = \varphi(\theta).$$

Par dérivation des intégrales paramétrées, on obtient donc :

$$K'(x) = \frac{1}{2\pi} \int_0^{2\pi} i \cos \theta \exp(ix \cos \theta) \ d\theta \ \text{et} \ K''(x) = -\frac{1}{2\pi} \int_0^{2\pi} (\cos \theta)^2 \exp(ix \cos \theta) \ d\theta.$$

Ainsi
$$xK'' + K'(x) + xK(x) = \frac{1}{2\pi} \int_0^{2\pi} (x(\sin\theta)^2 + i\cos\theta) \exp(ix\cos\theta) d\theta$$
, car $1 - (\cos\theta)^2 = (\sin\theta)^2$.

Or, par une intégration par parties, on a :

$$\int_0^{2\pi} x(\sin\theta)^2 \exp(ix\cos\theta) \ d\theta = \left[-(\sin\theta) \times \frac{1}{i} \exp(ix\cos\theta) \right] + \frac{1}{i} \int_0^{2\pi} (\cos\theta) \exp(ix\cos\theta) \ d\theta.$$

Donc
$$\int_0^{2\pi} x(\sin\theta)^2 \exp(ix\cos\theta) \ d\theta = -i \int_0^{2\pi} (\cos\theta) \exp(ix\cos\theta) \ d\theta$$
. D'où $xK'' + K'(x) + xK(x) = 0$.

Exercice C

1) R est continue, donc par le TVI, pour tout $k \in [1, n]$, il existe $x_k \in]a_{k-1}, a_k[$ tel que $R(x_k) = 0$.

On en déduit que P admet au moins n racines distinctes, donc par degré, R est nul.

2) a)
$$\mu_k = \prod_{j \neq k} (a_k - a_j)$$
 est du signe de $(-1)^k$, car $\forall j < k, \ a_k - a_j < 0$ et $\forall j > k, \ a_k - a_j > 0$.

b) On a
$$R(X) = \sum_{k=0}^{n} R(a_k) L_k(X)$$
. Le coefficient en X^n est donc $\sum_{k=0}^{n} \frac{R(a_k)}{\mu_k} = 0$, car deg $R < n$.

Or,
$$(-1)^k R(a_k) \ge 0$$
, donc par 1), $\frac{R(a_k)}{\mu_k} \ge 0$. Donc tous les $\frac{R(a_k)}{\mu_k}$ sont nuls.

Par degré, R est identiquement nul.

3) Supposons $Q \in E_{n-1}$ tel que $||f - Q||_{\infty} \le ||f - P||_{\infty}$. Posons R = P - Q = (P - f) - (Q - f).

On a donc $R(a_k) = (-1)^k ||f - P||_{\infty} + (f - Q)(a_k)$. Comme $(f - Q)(a_k) \le ||f - P||_{\infty}$, alors $R(a_k) \ge 0$.

Par 2) b), R=0, c'est-à-dire P=Q. Par contraposition, $||f-Q||_{\infty} \ge ||f-P||_{\infty}$, avec égalité ssi Q=P.

Remarque culturelle : Par un argument de compacité, on montre qu'il existe $P \in E_{n-1}$ minimisant $||f - P||_{\infty}$. On arrive aussi à montrer que f - P vérifie la propriété d'équi-oscillation.

La propriété du 3) permet alors de prouver que P est unique.

Exercice D

1) Posons $P(x) = \sum_{k=0}^{d} a_k x^k$. Alors $f(x) = \exp(a_0) \exp(a_1 x) ... \exp(a_d x^d)$.

Chaque fonction $x \mapsto \exp(a_k x^k) = \sum_{n=0}^{+\infty} \frac{(a_k)^n x^{kn}}{n!}$ est DSE en 0 de rayon $+\infty$.

Par produit de Cauchy, il en est de même de f(x) qui est un produit FINI de ces fonctions.

Par la formule de Cauchy $c_n = \sum_{k=0}^n a_k b_{n-k}$, un produit de DSE à coefficients positifs est à coefficients positifs. Donc le DSE de f est à coefficients positifs.

2) a) Les $a_n = \frac{b_n x^n}{f(x)}$ sont positifs et de somme 1, d'où le résultat :

On rappelle la propriété (supposée connue) du programme officiel : Pour toute suite $(a_n)_{n\in\mathbb{N}}$ positive telle que $\sum_{n=0}^{+\infty}a_n=1$, il existe une v.a. $X:\Omega\to\mathbb{N}$ telle que $\forall n\in\mathbb{N},\ P(X=n)=a_n$.

b) Le plus simple est d'utiliser la série génératrice $G_X(t) = E(t^X)$.

On a
$$\forall t \in [-1, 1], G_X(t) = E(t^X) = \sum_{n=0}^{+\infty} \frac{b_n x^n t^n}{f(x)} = \frac{f(tx)}{f(x)} = \frac{\exp(P(tx))}{\exp(P(x))}$$

On a donc
$$G'_X(1) = \frac{xf'(x)}{f(x)} = xP'(x)$$
 et $G''_X(1) = \frac{x^2f''(x)}{f(x)} = x^2P''(x) + x^2P'(x)^2$.

On en déduit E(X) = xP'(x) et $V(X) = G''_X(1) + G'_X(1) - G'_X(1)^2 = x^2P''(x) + xP'(x)$.

Ainsi,
$$E(X) = xP'(x) = \sum_{k=0}^{d} ka_k x^k$$
.

Et
$$V(X) = x^2 P''(x) + x P'(x) = \sum_{k=0}^{d} k(k-1)a_k x^k + \sum_{k=0}^{d} ka_k x^k = \sum_{k=0}^{d} k^2 a_k x^k$$
.

- **3)** a)
- Par linéarité de l'espérance, $E(Z) = \sum_{k=0}^d k E(Y_k) = \sum_{k=0}^d k a_k x^k$.
- Les kY_k sont indépendants, donc $V(Z) = \sum_{k=0}^d V(kY_k) = \sum_{k=0}^d k^2 V(Y_k) = \sum_{k=0}^d k^2 a_k$.
- b) Considérons une variable aléatoire Y de loi de Poisson $P(\lambda)$. On a $G_Y(t) = e^{\lambda(t-1)}$.

On rappelle que $E(Y) = \lambda$ et $V(Y) = \lambda$.

La variable kY a pour série génératrice $G_{kY}(t) = \sum_{n=0}^{+\infty} P(Y=n)t^{kn} = G_Y(t^k) = e^{\lambda(t^k-1)}$

Les Y_k sont indépendantes, donc les kY_k sont indépendantes, et ainsi on a :

$$\forall t \in [-1, 1], \quad G_Z(t) = \prod_{k=0}^d G_{kY_k} = \prod_{k=0}^d e^{a_k x^k (t^k - 1)} = \frac{e^{P(tx)}}{e^{P(x)}} = G_X(t)$$

Ainsi, X et Z ont même série génératrice, donc même loi (deux séries entières égales sur [-1,1] ont mêmes coefficients car mêmes dérivées en 0). Donc X et Z ont même espérance et même variance.

Par 2) b), on retrouve les valeurs de l'espérance et de la variance.

Exercice E

1) En associant +1 à une parenthèse ouvrante et -1 à une parenthèse fermante, toute formule parenthésée avec n paires de parenthèses s'identifie à un élément de $\{-1,1\}^{2n}$: il s'agit en fait des mots de Dyck (tout préfixe contient un nombre de +1 supérieur ou égal au nombre de -1).

On a donc $c_n \leq \operatorname{card}(\{-1,1\}^{2n}) = 2^{2n} = 4^n$. Et le rayon de convergence vérifie $R \geq \frac{1}{4} > 0$.

2) Pour $x \in]-R, R[$, on a $f(x) = c_0 + \sum_{n=1}^{+\infty} c_{n+1} x^{n+1} = 1 + \sum_{n=0}^{+\infty} x \left(\sum_{k=0}^{n} c_k c_{n-k} \right) x^n.$

Par produit de Cauchy, on a : $\forall x \in]-R, R[, f(x)^2 = \sum_{n=0}^{+\infty} (\sum_{k=0}^n c_k c_{n-k}) x^n.$

Donc $\forall x \in]-R, R[, f(x) = 1 + xf(x)^2]$

Remarque : Le produit de Cauchy de deux séries entières s'applique à l'intérieur du disque de convergence (valable car il y a convergence absolue des séries).

3) Soit $x \in]-R, R[$. On a: $f(x) = 1 + xf(x)^2$. D'où $1 - 4x \ge 0$ et $f(x) = \frac{1 \pm \sqrt{1 - 4x}}{2x}$.

Remarque: En particulier, on a nécessairement $R \leq \frac{1}{4}$, d'où avec a), $R = \frac{1}{4}$.

Il reste à prouver que $f(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$.

On a au voisinage de 0, $f(x) = c_0 + \mathfrak{o}(1)$, c'est-à-dire $f(x) \sim 1$.

Or, la fonction $x \longmapsto \frac{1+\sqrt{1-4x}}{2x}$ diverge lorsque $x \to 0^+$.

Donc nécessairement, sur un voisinage]-r,r[de 0 (avec $r \leq R$), on a $f(x) = \frac{1-\sqrt{1-4x}}{2x}$.

(sinon, il existerait $(x_n)_{n\in\mathbb{N}}$ tendant vers 0 telle que $f(x_n) = \frac{1-\sqrt{1-4x_n}}{2x_n}$, ce qui contredit $\lim_{n\to+\infty} f(x_n) = 1$).

4) Par le cours, on a on sait que $u \longmapsto \sqrt{1-u}$ est DSE de rayon R=1, donc

$$\forall u \in]-1,1[, \quad \sqrt{1-u} = (1-u)^{1/2} = 1 - \sum_{n=0}^{+\infty} \frac{1}{2} \frac{1}{2} \frac{3}{2} \dots \left(n - \frac{3}{2}\right) \frac{u^n}{n!}$$

Donc pour $n \ge 0$, $a_{n+1} = \frac{1}{2} \times \frac{1}{2} \cdot \dots \cdot \left(n - \frac{1}{2}\right) \cdot \frac{1}{(n+1)!} = \frac{1}{2} \cdot \frac{1}{4^n} \cdot \frac{1}{n+1} \binom{2n}{n}$.

Donc
$$\frac{1 - \sqrt{1 - 4x}}{2x} = \frac{1}{2} \sum_{n=0}^{+\infty} 4^{n+1} a_{n+1} x^n$$
.

Deux séries entières qui coincident au voisinage de 0 ont les mêmes coefficients.

Par unicité du DSE, on a donc $c_n = \frac{1}{2} 4^{n+1} a_{n+1} = \frac{1}{2} \frac{1}{2} \frac{1}{4^n} \frac{1}{n+1} {2n \choose n} = \frac{1}{n+1} {2n \choose n}$.