Interrogation n°24 bis

Soit un entier $N \geq 2$. Pour $A \in \mathcal{M}_N(\mathbb{R})$ et $(i,j) \in [1,N]^2$, on note $(A^n)_{ij}$ les coefficients de A^n .

On note Z le vecteur de \mathbb{R}^N dont les coefficients sont égaux à 1.

1) Un premier exemple. On considère
$$M = \begin{pmatrix} 0 & \alpha & \alpha & \dots & \alpha \\ \alpha & 0 & \alpha & \alpha & \vdots \\ \alpha & \alpha & 0 & \ddots & \alpha \\ \vdots & \alpha & \ddots & \ddots & \alpha \\ \alpha & \dots & \alpha & \alpha & 0 \end{pmatrix}$$
, où $\alpha = \frac{1}{N-1}$.

On note $J \in \mathcal{M}_N(\mathbb{R})$ la matrice ne contenant que des 1.

- a) Montrer que J est diagonalisable dans $\mathcal{M}_N(\mathbb{R})$.
- b) Montrer que M admet un polynôme annulateur de degré 2 qu'on précisera.
- c) Montrer qu'il existe deux matrices M_0 et M_1 indépendantes de N telles que

$$\forall n \in \mathbb{N}, M^n = M_0 + (-\alpha)^n M_1$$

d) Montrer que $M_0 = \frac{1}{N}J$ et $M_1 = I_N - \frac{1}{N}J$, et en déduire que

$$\forall n \in \mathbb{N}, \ \forall (i,j) \in [1,N]^2, \ \left| (M^n)_{i,j} - \frac{1}{N} \right| \le \left(\frac{1}{N-1} \right)^n$$

e) On propose une autre preuve de c). On a $J^2=NJ$ et $M=\alpha(J-I_N)$.

Exprimer simplement M^n comme combinaison de J et de I_N . Retrouver c).

2) Cas général

Soit $A \in \mathcal{M}_N(\mathbb{R})$ une matrice symétrique vérifiant :

$$\forall (i,j) \in [1,N]^2, A_{ij} \ge 0 \text{ et } \forall i \in [1,N], \sum_{i=1}^N A_{ij} = 1$$

a) Justifier qu'il existe une base orthonormée $V_1,...,V_n$ de \mathbb{R}^N et des réels $\lambda_1\geq ...\geq \lambda_N$ tels que

$$\forall k \in [1, N], \ AV_k = \lambda_k V_k$$

On note $(V_k)_i$ les coefficients de V_k .

b) Montrer que

$$\forall n \in \mathbb{N}, \forall (i,j) \in [1,N]^2, (A^n)_{i,j} = \sum_{k=1}^N (\lambda_k)^n (V_k)_i (V_k)_j$$

c) Dans cette question, on suppose $\forall (i,j) \in [1,N]^2$, $A_{ij} > 0$.

Montrer que $\operatorname{Sp}(A) \subset]-1,1]$ et que $\operatorname{Ker}(A-I_n)=\mathbb{R}Z$.

 $Indication: \text{Pour } X \text{ vecteur propre de } A, \text{ considérer } i \text{ tel que } |x_i| = \|X\|_{\infty}, \text{ où } \|X\|_{\infty} = \max_{1 \leq j \leq N} |x_j|.$

d) Dans cette question, on suppose que $\lambda_1 = 1$ et que $\forall j \in [2, N], \lambda_j \in]-1, 1[$.

On pose
$$\rho = \max(|\lambda_2|, |\lambda_N|) < 1$$
. Montrer que $\forall n \in \mathbb{N}, \left| (A^n)_{i,j} - \frac{1}{N} \right| \leq \rho^n$.

e) Question supplémentaire hors-interro. On remplace l'hypothèse $A_{ij}=A_{ji}>0$ par $A_{ij}=A_{ji}\geq0$.

Montrer que -1 est valeur propre de A ssi il existe une partition $[1, N] = J_0 \sqcup J_1$ telle que

$$\forall (i,j) \in [1,N]^2, \ a_{ij} > 0 \Rightarrow (i,j) \in (J_0 \times J_1) \sqcup (J_1 \times J_0)$$

3) Un deuxième exemple

On pose
$$M = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & & \\ & & 0 & \ddots & & \\ & & & \ddots & 1 \\ 1 & & & 0 \end{pmatrix} = (\delta_{i=j-1 \mod N})_{1 \le i \le N, 1 \le j \le N} \in \mathcal{M}_N(\mathbb{R}) \text{ et } Z = \begin{pmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^N.$$

- a) Montrer que le spectre de M sur \mathbb{C} est $U_N = \{\omega^k, 0 \le k < N\}$, où $\omega = \exp\left(\frac{2i\pi}{N}\right)$.
- b) Expliciter la matrice $A = \frac{1}{2}I_n + \frac{1}{4}(M + M^{-1})$ en justifiant la valeur de M^{-1} .
- c) Montrer que A est diagonalisable dans $\mathcal{M}_N(\mathbb{R})$ et expliciter ses valeurs propres.
- d) Montrer que $\forall n \in \mathbb{N}, \ \forall (i,j) \in [1,N]^2, \ \left| (A^n)_{ij} \frac{1}{N} \right| \le \cos\left(\frac{\pi}{N}\right)^{2n}.$
- 4) Un troisième exemple

On pose
$$M = \begin{pmatrix} 1/2 & 1/2 & & & \\ 1/2 & 0 & 1/2 & & & \\ & 1/2 & \ddots & \ddots & & \\ & & \ddots & 0 & 1/2 \\ & & & 1/2 & 1/2 \end{pmatrix} \in \mathcal{M}_N(\mathbb{R}).$$

a) Soit $k \in \{0, 1, ..., N - 1\}$. On considère $\lambda_k = \cos\left(\frac{k\pi}{N}\right)$.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=u_1=1$ et $\forall n\geq 1,\ u_{n-1}-2\lambda u_n+u_{n+1}=0$.

Montrer que $u_N = u_{N+1}$.

- b) Déterminer $\mathrm{Sp}(M)$.
- c) Montrer que $\forall n \in \mathbb{N}, \forall (i,j) \in [1,N]^2, \left| (A^n)_{ij} \frac{1}{N} \right| \leq \cos \left(\frac{\pi}{N} \right)^n$.