Interrogation n°19. Corrigé

Exercice A

- 1) La fonction $t \mapsto \frac{1}{t \ln t}$ décroît donc $\sum_{n \ge 1} \frac{1}{n \ln n}$ de même nature que $\int_e^{+\infty} \frac{dt}{t \ln t} = [\ln \ln t]_e^{+\infty} = +\infty$.
- 2) On a $\lim_{n\to+\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to+\infty} \frac{\ln(n+1)}{\ln n} \frac{n+2}{2n+2} = \frac{1}{2}$, donc par d'Alembert, la série converge.

Autre méthode : On a en fait $a_n = (\ln n) \times \frac{n+1}{2^n}$, donc $a_n = O\left(\frac{1}{n^2}\right)$.

$$\mathbf{3)} \text{ On a } (-1)^n a_n = n^\alpha \left(\left(1 + \frac{1}{n} \right)^\alpha - 1 \right) = (-1)^n n^\alpha \left(\frac{\alpha}{n} + O\left(\frac{1}{n^2}\right) \right) = \frac{\alpha (-1)^n}{n^{1-\alpha}} + \varepsilon_n, \text{ où } \varepsilon_n = O\left(\frac{1}{n^{2-\alpha}}\right).$$

On a $2-\alpha>1$, donc $\sum \varepsilon_n$ est absolument convergente.

On a $1 - \alpha > 0$, donc $\left(\frac{1}{n^{1-\alpha}}\right)_{n \in \mathbb{N}^*}$ décroît vers 0,et ainsi $\sum \frac{\alpha(-1)^n}{n^{1-\alpha}}$ converge (par le CSSA).

Donc $\sum_{n\geq 1} (-1)^n a_n$ converge comme somme de deux séries convergentes.

 $Autre\ m\'ethode:\ f:t\longmapsto (t+1)^{\alpha}-t^{\alpha}\ d\'ecro\^{\rm it}\ {\rm sur}\]0,+\infty[,\ {\rm car}\ f'(t)=\alpha\left(\frac{1}{(t+1)^{1-\alpha}}-\frac{1}{t^{1-\alpha}}\right)<0.$

Or, on a $a_n = f(n)$. Donc $(a_n)_{n \in \mathbb{N}}$ décroissante.

D'autre part, $(a_n)_{n\in\mathbb{N}}$ tend vers 0 (car $\alpha<1$). Par le CSSA, $\sum_{n\geq 1}(-1)^na_n$ converge.

4) On a $(a_{n+1}-a_n)b_n=O(|a_{n+1}-a_n|)$. Comme $(a_n)_{n\in\mathbb{N}}$ décroissante positive, alors $(a_n)_{n\in\mathbb{N}}$ converge.

De plus, $|a_{n+1} - a_n| = a_n - a_{n+1}$. Donc $\sum |a_{n+1} - a_n|$ converge. Par comparaison, $\sum (a_{n+1} - a_n)b_n$ converge.

Exercice B

1)
$$\frac{t^{x-1}}{e^t - 1} \sim_0 t^{x-2}$$
 intégrable sur $]0,1]$ car $x - 2 > -1$ et $\frac{t^{x-1}}{e^t - 1} = O_{+\infty}\left(\frac{1}{t^2}\right)$ intégrable sur $[1, +\infty[$.

Donc J(x) existe pour tout x > 1.

- **2)** Posons $f(t,x) = \frac{t^{x-1}}{e^t 1}$. On a:
- Pour tout t > 0, $x \longmapsto f(t,x)$ est de classe C^{∞} et $\frac{\partial^n f}{\partial x^n}(t,x) = \frac{(\ln t)^n t^{x-1}}{e^t 1}$.
- Pour tout x > 0, les $t \longmapsto \frac{\partial^n f}{\partial x^n}(t, x)$ sont continues (par morceaux) sur $]0, +\infty[$.

- Pour tout
$$n \in \mathbb{N}^*$$
, pour tout $x \in [a, b] \subset]1, +\infty[$, $\left|\frac{\partial^n f}{\partial x^n}(t, x)\right| \leq \varphi_n(t) = \begin{cases} \frac{|\ln t|^n t^{a-1}}{e^t - 1} & \text{si } t \in]0, 1] \\ \frac{|\ln t|^n t^{b-1}}{e^t - 1} & \text{si } t \geq 1 \end{cases}$

On choisit c de sorte que -1 < c < a - 2.

On a $\varphi_n(t) = O\left(t^c\right)$ en t = 0 et $\varphi_n(t) = O_{+\infty}\left(\frac{1}{t^2}\right)$. Donc φ_n est intégrable.

Donc J est de classe C^{∞} .

3) On a
$$\forall t > 0$$
, $\frac{t^{x-1}}{e^t - 1} = e^{-t} \frac{t^{x-1}}{e^t - 1} = \sum_{n=1}^{+\infty} t^{x-1} e^{-nt}$.

On a
$$\int_0^{+\infty} |t^{x-1}e^{-nt}| dt = \int_0^{+\infty} t^{x-1} e^{-nt} dt = \frac{1}{n^x} \int_0^{+\infty} u^{x-1}e^{-u} du = \frac{\Gamma(x)}{n^x}$$
.

La série $\sum \frac{\Gamma(x)}{n^x}$ converge car x > 1. Par le th ITT, on a donc $J(x) = \sum_{n=1}^{+\infty} \frac{\Gamma(x)}{n^{x+1}} = \Gamma(x)\zeta(x)$.

Exercice C

1) a) Hypothèse de domination : il existe $(\alpha_n)_{n\in\mathbb{N}}$ de réels positifs et un entier p_0 tels que

$$\forall p \geq p_0 , \forall n \in \mathbb{N}, |a_{n,p}| \leq \alpha_n$$
 et $\sum \alpha_n$ converge

b) Hypothèse de convergence normale : $\sum_{n=0}^{+\infty} \sup_{p \in \mathbb{N}} |a_{n,p}| < +\infty$.

On peut se limiter aux valeurs de p assez grandes : pour $p \ge p_0$, $\sum_{n=0}^{+\infty} \sup_{p \ge p_0} |a_{n,p}| < +\infty$.

- c) Les conditions du a) et du b) sont équivalentes, car on peut se ramener au cas où $\alpha_n = \sup_{p \geq p_0} |a_{n,p}|$.
- **2)** a) Par l'inégalité de la moyenne, on a $|a_n| \leq \frac{M_r(f)}{r^n}$.
- b) Soient $n \in \mathbb{N}$ et r > 0. On note C_r le cercle de centre 0 et de rayon r. En particulier, C_r est un compact.

Par hypothèse, la suite $(f_k)_{k\in\mathbb{N}}$ converge uniformément sur C_r vers f.

Posons $\varphi_k(t) = f_k(re^{it}) \ e^{-int}$ et $\varphi(t) = f(re^{it}) \ e^{-int}$. Les φ_k sont continues (cv normale d'une série de fonctions continues) et $(\varphi_k)_{k\in\mathbb{N}}$ converge uniformément vers φ sur $[0, 2\pi]$.

Donc φ est continue et $\lim_{k\to+\infty} \int_0^{2\pi} \varphi_k(t) \ dt = \int_0^{2\pi} \varphi(t) \ dt$.

Donc $\lim_{k\to+\infty} a_n^{(k)} = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) e^{-int} dt$. On pose donc $a_n = \frac{1}{2\pi} \int_0^{2\pi} f(re^{it}) e^{-int} dt$.

Remarque: On peut aussi utiliser le th de cv dominée : $|\varphi_k(t)| \le \psi(t) = 1 + |\varphi(t)|$ pour k assez grand.

c) On fixe $z \in \mathbb{C}$. On choisit r > |z|. Posons $\forall n \in \mathbb{N}, \forall k \in \mathbb{N}, \omega_k(n) = a_n^{(k)} z^n$ et $\omega(n) = a_n z^n$.

On a $f_k(z) = \sum_{n=0}^{+\infty} \omega_k(n)$ et $f(z) = \sum_{n=0}^{+\infty} \omega(n)$. Par b), on a $\forall n \in \mathbb{N}$, $\lim_{k \to +\infty} \omega_k(n) = \omega(n)$.

De plus, on a $\forall k \in \mathbb{N}, \ |\omega_k(n)| \le \left(\frac{|z|}{r}\right)^n M_r(f_k).$

Comme $(f_k)_{k\in\mathbb{N}}$ converge uniformément vers f sur C_r , alors $\lim_{k\to+\infty}M_r(f_k)=M_r(f)$.

Doonc $(M_r(f_k))_{k\in\mathbb{N}}$ est bornée par un réel m. D'où $\forall k\in\mathbb{N}, |\omega_k(n)|\leq m\left(\frac{|z|}{r}\right)^n$.

Comme $\sum_{n\in\mathbb{N}} m\left(\frac{|z|}{r}\right)^n$ converge, alors par cv dominée (cf 1)), $\lim_{k\to+\infty}\sum_{n=0}^{+\infty}\omega_k(n)=\sum_{n=0}^{+\infty}\omega(n)$.

D'où $f(z) = \lim_{k \to +\infty} f_k(z) = \sum_{n=0}^{+\infty} a_n z^n$, et ainsi f est DSE sur \mathbb{C} .

Exercice B

1) On a $\forall (X,Y) \in \mathbb{R}^p$, $(VX \mid Y) = (X \mid V^TY)$.

Supposons $Y \in \text{Ker}(V^T)$. On a donc $\forall X \in \mathbb{R}^p$, $(VX \mid Y) = 0$, donc $Y \in (\text{Im } V)^{\perp}$. Ainsi, $(\text{Im } V)^{\perp} \subset \text{Ker}(V^T)$.

Or, par le th du rang, $\dim \operatorname{Ker}(V^T) = p - \operatorname{rg}(V^T) = p - \operatorname{rg}(V) = \dim((\operatorname{Im} V)^{\perp}).$

Par inclusion et par égalité des dimensions, on a donc $(\operatorname{Im} V)^{\perp} = \operatorname{Ker}(V^T)$.

2) On a $\operatorname{rg}(VV^T) = \operatorname{rg}(I_q) = q$, donc $\operatorname{rg} V \ge q$, et ainsi $p \ge q$.

On sait que $(\operatorname{Im} V) \oplus^{\perp} (\operatorname{Im} V)^T = \mathbb{R}^q$.

Si $Y = VX \in \operatorname{Im} V$, on a $PY = V(V^TX) = 0$, car $\operatorname{Ker}(V^T) = (\operatorname{Im} V)^{\perp}$. Si $Y \in (\operatorname{Im} V)^{\perp}$, alors $V(V^TX) = 0$.

Donc $P = VV^T$ est la matrice de la projection orthogonale sur Im V.

Autre preuve (conseillée): Comme $VV^T = I_p$, alors $(V_1, ..., V_q)$ est une base orthonormée de Im V.

Donc $\forall X \in \mathbb{R}^q, \ PX = \sum_{j=1}^q V_j V_j^T X = \sum_{j=1}^q (V_j \mid X) V_j$ projeté orthogonal de X sur Im V.

3) Soit
$$\left(\frac{X}{Y}\right) \in \text{Ker } M$$
, c'est-à-dire $\begin{cases} VX + Y = 0 \\ W^TY = 0 \end{cases}$.

On a alors $W^T(-VX) = 0$, donc X = 0 (car W^TV inversible). Donc Y = -WV = 0.

On en déduit que $\operatorname{Ker} M = \{0\}$, et comme M est une matrice carrée, M est inversible.

4) On a
$$W^T V \in GL_q(K)$$
, donc $\operatorname{Ker}(W^T V) = \{0\}$, et ainsi $\operatorname{Im} V \cap \operatorname{Ker}(W^T) = \{0\}$.

On a aussi $\operatorname{rg}(W^T) \geq \operatorname{rg}(W^T V) = q$. Comme $\operatorname{rg}(W^T) \leq \min(p,q)$, alors $\operatorname{rg}(W^T) = q$.

Donc dim $\operatorname{Ker}(W^T) = p - q$ par le th du rang. Par dimension $\operatorname{Im} V \oplus \operatorname{Ker}(W^T) = \mathbb{R}^p$.

5) Soit
$$Z = VX + Y \in \operatorname{Im} V \oplus \operatorname{Ker}(W^T) = \mathbb{R}^p$$
. On a $PZ = (V \mid O_p) M^{-1} \left(\frac{VX + Y}{O_q} \right)$.

Posons
$$\left(\frac{X'}{Y'}\right) = M^{-1} \left(\frac{AX + Y}{O_q}\right)$$
. On a donc $\begin{cases} VX' + Y' = VX + Y \\ W^TY' = 0 = W^TY \end{cases}$

Posons
$$\left(\frac{X'}{Y'}\right) = M^{-1}\left(\frac{AX+Y}{O_q}\right)$$
. On a donc $\begin{cases} VX'+Y'=VX+Y\\ W^TY'=0=W^TY \end{cases}$
On obtient donc $\begin{cases} V(X'-X)=-(Y'-Y)\\ W^T(Y'-Y)=0 \end{cases}$, donc $Y'-Y=0$ et $X'-X=0$ (cf 3)).

Ainsi,
$$M^{-1}\left(\frac{VX+Y}{O_q}\right) = \left(\frac{X}{Y}\right)$$
, et $PZ = VX$.

Donc P est la projection sur $(\operatorname{Im} V)$ parallèlement à $(\operatorname{Im} W)^{\perp}$.

Exercice E

1) Δ est non vide car $\lim_{t\to-\infty} P(X \ge t) = 1$ (par continuité croissante).

 $\Delta \text{ est major\'e car } \lim_{t\to +\infty} P(X\geq t) = 0 \quad \text{(par continuit\'e croissante)}. \text{ Il existe donc } m = \sup \Delta.$

- On a $m = \lim_{n \to +\infty} t_n$, avec $t_n \in \Delta$ et on peut choisir $(t_n)_{n \in \mathbb{N}}$ croissante.

Donc par continuité décroissante, $P(X \ge m) = \lim_{n \to +\infty} P(X \ge t_n) \ge \frac{1}{2}$.

- Pour
$$t > m$$
, on a $P(X \ge t) < \frac{1}{2}$, donc par continuité décroissante $P(X \le m) = \lim_{n \to +\infty} P\left(X < m + \frac{1}{n}\right) \ge \frac{1}{2}$.

2) Si
$$m \ge \mu$$
, $(X \ge m)$ implique $(|X - \mu| \ge |m - \mu|)$, donc $P(|X - \mu| \ge |m - \mu|) \ge P(X \ge m)$.

Si
$$m \le \mu$$
, $(X \le m)$ implique $(|X - \mu| \ge |m - \mu|)$, donc $P(|X - \mu| \ge |m - \mu|) \ge P(X \le m)$.

Dans tous les cas, on a donc $P(|X - \mu| \ge |m - \mu|) \ge \frac{1}{2}$.

Or, par l'inégalité de Bienaymé-Tchevychev, on a $P(|X - \mu| \ge |m - \mu|) \le \frac{V(X)}{(m - \mu)^2}$

Donc $V(X) \ge \frac{1}{2}(m-\mu)^2$, c'est-à-dire $|m-\mu| \le \sqrt{2}\sigma(X)$.