Interrogation n°17. Corrigé
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1) On a lim, 400 f (,O) =1letlim, yoo f < > = £ 1.
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On en déduit que f n’admet pas de limite en (0,0).

2) On a aussi f(z,0) = ¢(|z]) = 0 (), car ¢'(0) = 0. Donc g(0,0) existe et vaut 0.
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Pour (z,y) # (0,0), on a : a—i(m,y) = \/g%y?gpl( /22 + y?).

Pour (z,y) # (0,0), on a : ‘zf(:c,y)) <l (2?2 + yz)‘ — 0 lorsque (z,y) tend vers 0.
x
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Donc of existe et est continue en (0, 0).
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3) Onaax(ﬁc,y)—%;go(x +y°) et 8y(w,y)-2y<p(w + y°).

Donc f vérifie (E) ssi V¢ > 0, 2t¢/(t) = 2, c’est-a-dire p(t) = Int + k, ot k constante.

4) a) g(X) = f(AX) = g(0) + (VF(0) | AX) + (AX | Hy(0)(AX)) + o (JAX|?) lorsque X tend vers 0.
On a |[AX|? = O(|X||?) car A lipschitzienne et (AX | Hy( 0 J(AX)) = (X | ATHf(ﬁ)AX).

Done g(X) = f(AX) = g(0) + (ATVF(T) | X) + 5 (X | ATH(T)AX) + o (|X]*).

Par unicité¢ du DLy (cf addendum en fin de corrigé), on a donc H, ( y=ATH f( A.

b) On a Ag(0) = tr(Hy(0)) = tr(ATH;(0)A) = tr(Hs(0)AAT) = tr(Hs(0)) = Af(0), car AAT =

5) a) L’application ¢ : R2 — R (s,p) — s% — 4p est continue, et on a U = ¢~ 1(]0, +o0]).

Donc U est un ouvert de R? comme image réciproque d’un ouvert par une fonction continue.
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b) Ona 27 (z,y) = = (w+y,xy)+yap(w+y,xy).
&g O f >’f 30 f
Dot —2 2 .
ou o 5(T,y) = s -5 (@ +y,zy) + Y asop (z+y,zy) +9° apz(ery,xy)

c) d) Remarque : ¢ est une bijection car (x,p) = (z + ¥y, zy) ssi z et y sont les racines du polynome X2 — sX + p,
qui sont réelles distinctes ssi le discriminant A = s2 — 4p est strictement positif.
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Commex<y,ona:c:§<s— 32—4p) ety:§<s+\/82—4p>.

On vérifie aisément que ces fonctions sont de classe C'* sur U, donc ¢~

1 _
OnaJ@(w,y)—<; i),doncjcp(ggy)l—x_y(_xy 11>.

:C eta—x(s ) = -1
op 2 Cz—y

(s— 32—4p).

6) a) On considére g(t) = f(X(t)). On a g de classe C' et ¢/(t) = V(X (1)) - X'(¢).

1 est bien de classe C1.

Or, on sait que J,-1(s,p) = Jo(z,y)~L, donc %(Svp) e Y

Remarque : On peut naturellement retrouver ces valeurs en utilisant x =

N

Comme g(b f ) dt, alors f(X (b)) — f(X(a)) = ff V(X)) X'(t) dt.



b) On a ici Vf(X(?)) - X'(t) = [VS(X@O) X @) = m [ X ()]

De plus, par I'inégalité triangulaire, fab | X (t))| dt > ‘ ! t))dt” = ||X(b) — X(a)||. D’ou le résultat.
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7)a)Ona ——(X)= ——2——— donc Vf(X) = —.
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b) On a | X + H|* = | X|* +2(X, H) + ||H|*.

X, H X, H
DoncHX—i—HH—HXH\/ +2 >+0(HH||)—]X]<1+< >—|—0(HHH)> IorsqueH—>6).

HXH X
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Dou || X + H|| = || X| + ||X|| + o (||HJ). On retrouve (unicité du DL;j) que Vf(X) = X
8) Rappel : |e*| = eRe?, donc [t7| = et Re? = ¢Rez,
a) On a [t*7! e7!| ="~ e~" intégrable (car t*~! e ~g t" L et 77! e7 = 040 (t72)).
b) On fixe y € R. Posons g(z,t) = t**% =1 ¢!, On a x +—— t*T% =1 ¢t est continue (pour ¢ fixé).

0 .
On a —g( ,t) = (Int) t*T%=1 =t Soit un segment arbitraire [a, b] C]0, +o0].

oz
Int) t*tetsit<l
@(x,t)‘g{ (Int) e tsit<

On a Vz € [, +00f, - (Int) b1 e tsit>1

= (t), avec ¢ intégrable sur |0, +oo[ (Bertrand).

0 0 0
Par le th de dérivation des intégrales paramétrées, a—f existe et vaut a—f(av, y) = oo g( ,t) dt.
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b) ona 5 (e.) = iF (@),

d) Soit (2, )nen une suite dans U convergeant vers z € U. Posons f,(t) = t*»~! et

On a Vt €]0, +00l, limy, 10 fn(t) = f(t), ot f(t) =L et
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Posons z = x + iy. Pour n > ng assez grand, §{L' <z, <2zx. Posons a = 53; et b= 2.

(Int) t*Letsit<1

= ¢(t), avec ¢ intégrable sur |0, +oo].
(In t)tbl tgit>1 w(t) 4 & ) [

Donc Vn > ng, | fn(t)| < {
Par convergence dominée, lim,,_, | oo f fu(t) dt = +°° f(t) dt, cest-a-dire lim,,—, 1 ['(2,) = T'(2).
Par caractérisation séquentielle, I' est continue sur U.

9) a) On considére Vt € R, ¢(t) = f(z +tv). On a ¢'(t) = Vf(x +tv) - v

Donc f(T + V) — f(Z) = [y ¢'(t) dt = [} Vf(z+tv) - v dt.

b) Supposons (ii). Alors V f(z + tv) - v = 0, car v appartient a 'orthogonal de F'. D’ou (i) par a).
Réciproquement, supposons (ii). On considére (z,v) € E x F*.

On aVt € R, g(t) = f(x + tv) — f(z) = 0. Donc ¢'(0) = 0, c’est-a-dire V f(z) - v = 0.

Comme v est arbitraire, Vf(z) € (FX)+ = F.

c) On prend F' = Vect(ey, ..., €,), ol les e sont les vecteurs de la base canonique.

D'ott Ft = Vect(€,41, . €rip)-

(i) équivaut a : Pour tout (z,v) € E x F*, f(z +v) = f(x).



On a cel équivaut a : f(z1, ..., Tr, Try1, ..o, Tp) = f(21,..., 20,0, ...,0).
En particulier, comme f est C? et ¢(z1,...,2,) = f(x1, ..., 2,0, ...,0), alors ¢ est C2.
(ii) équivaut a : Pour tout @ € E, Vf(z) € F.
Donc (i) équivaut a (ii) par b). Montrons désormais que (ii) équivaut a (iii).
of

La j-iéme colonne (ou ligne) de la Hessienne H¢(x) contient les coefficients du gradient de ——(x).
L

Or, une fonction est nulle ssi elle vaut 0 en 0 et son gradient est nul.

0 0
Donc of est nulle ssi —f(ﬁ)) =0 et la j-iéme colonne de H¢(x) est nulle. Donc (ii) équivaut a (iii).
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Addendum question 4) a) : Montrons ’unicité du DL :

Supposons o+ (V| X) + (X | AX) +o(|IX|[%) = 8+ (W | X) + (X | BX) +o(|X|)

ou « et B sont réels, V et W des vecteurs, A et B des matrices symétriques.

On montre d’abord que o = 3, puis on montre (comme dans le cours que V- =W).

On a donc (X | AX) = (X | BX) + o(|| X]||?).

On fixe X et on considére t — ¢tX. On obtient t>(X | AX) = t3(X | BX) + o0 (t?) lorsque t +—— 0.

On divise par 2 et on en déduit en faisant tendre ¢ vers 07, que (X | AX) = (X | BX).

On conclut alors en utilisant le lemme suivant :
Lemme : Soient A et B € S,,(R) telles que VX € R", (X | AX) = (X | BX).

Premiére preuve : On a VX e R", (X | (A—B)X) =0.
Supposons par 'absurde A # B. Donc la matrice symétrique (A — B) n’est pas nulle.
Elle admet donc un vecteur propre X de valeur propre A # 0.

On a donc (X | (A— B)X) = \||X||* # 0, d’out une contradiction.

Seconde preuve (conseillée) :

On utilise I'identité de polarisation pour les formes bilinéaires symétriques :
onaeneffet (X+Y|AX+Y)) =(X|AX)+2(X | AY)+ (Y | AY), car A symétrique.
Donc 2(X |AY)=(X+Y |AX+Y))— (X | AX)— (Y | AY).

Autrement dit, la forme bilinéaire est entiérement définie par la forme quadratique :
o(z,y) = 3(q(z +y) — q(z) — q(y)), ot q(z) = ¢(z,z) et ¢ forme bilinéaire symétrique.
On a donc V(X,Y) e R" xR (X | AY) = (X | BY).

En prenant X = F; et Y = Ej, on obtient a;; = b;;. Donc on a bien A = B.



