
Interrogation no17. Corrigé

1) On a limn!+1 f

�
1

n
; 0

�
= 1 et limn!+1 f

�
1

n
;
1

n

�
=

1p
2
6= 1:

On en déduit que f n�admet pas de limite en (0; 0):

2) On a aussi f(x; 0) = '(jxj) = o (x), car '0(0) = 0. Donc @f
@x
(0; 0) existe et vaut 0:

Pour (x; y) 6= (0; 0), on a : @f
@x
(x; y) =

xp
x2 + y2

'0(
p
x2 + y2):

Pour (x; y) 6= (0; 0), on a :
����@f@x (x; y)

���� � ���'0(px2 + y2)���! 0 lorsque (x; y) tend vers 0:

Donc
@f

@x
existe et est continue en (0; 0).

3) On a
@f

@x
(x; y) = 2x'0(x2 + y2) et

@f

@y
(x; y) = 2y'0(x2 + y2):

Donc f véri�e (E) ssi 8t > 0, 2t'0(t) = 2, c�est-à-dire '(t) = ln t+ k, où k constante.

4) a) g(X) = f(AX) = g(
�!
0 ) + (rf(�!0 ) j AX) + 1

2
(AX j Hf (

�!
0 )(AX)) + o (kAXk2) lorsque X tend vers

�!
0 :

On a kAXk2 = O(kXk2) car A lipschitzienne et (AX j Hf (
�!
0 )(AX)) = (X j ATHf (

�!
0 )AX):

Donc g(X) = f(AX) = g(
�!
0 ) + (ATrf(�!0 ) j X) + 1

2
(X j ATHf (

�!
0 )AX) + o (kXk2):

Par unicité du DL2 (cf addendum en �n de corrigé), on a donc Hg(
�!
0 ) = ATHf (

�!
0 )A.

b) On a �g(
�!
0 ) = tr(Hg(

�!
0 )) = tr(ATHf (

�!
0 )A) = tr(Hf (

�!
0 )AAT ) = tr(Hf (

�!
0 )) = �f(

�!
0 ), car AAT = Ip:

5) a) L�application � : R2 ! R (s; p) 7�! s2 � 4p est continue, et on a U = ��1(]0;+1[):

Donc U est un ouvert de R2 comme image réciproque d�un ouvert par une fonction continue.

b) On a
@g

@x
(x; y) =

@f

@s
(x+ y; xy) + y

@f

@p
(x+ y; xy):

D�où
@2g

@x2
(x; y) =

@2f

@s2
(x+ y; xy) + 2y

@2f

@s@p
(x+ y; xy) + y3

@2f

@p2
(x+ y; xy):

c) d) Remarque : ' est une bijection car (x; p) = (x+ y; xy) ssi x et y sont les racines du polynôme X2 � sX + p,

qui sont réelles distinctes ssi le discriminant � = s2 � 4p est strictement positif.

Comme x < y, on a x =
1

2

�
s�

p
s2 � 4p

�
et y =

1

2

�
s+

p
s2 � 4p

�
.

On véri�e aisément que ces fonctions sont de classe C1 sur U , donc '�1 est bien de classe C1:

On a J'(x; y) =
�
1 1
y x

�
, donc J'(x; y)�1 =

1

x� y

�
x �1
�y 1

�
:

Or, on sait que J'�1(s; p) = J'(x; y)
�1, donc

@x

@s
(s; p) =

x

x� y et
@x

@p
(s; p) =

�1
x� y :

Remarque : On peut naturellement retrouver ces valeurs en utilisant x =
1

2

�
s�

p
s2 � 4p

�
.

6) a) On considère g(t) = f(X(t)). On a g de classe C1 et g0(t) = rf(X(t)) �X 0(t):

Comme g(b)� g(a) =
R b
a g

0(t) dt, alors f(X(b))� f(X(a)) =
R b
a rf(X(t)) �X

0(t) dt:



b) On a ici rf(X(t)) �X 0(t) = krf(X(t))k kX 0(t))k � m kX 0(t))k :

De plus, par l�inégalité triangulaire,
R b
a kX

0(t))k dt �



R ba X 0(t))dt




 = kX(b)�X(a)k : D�où le résultat.
7) a) On a

@f

@xj
(X) =

xjp
x21 + :::+ x

2
n

, donc rf(X) = X

kXk :

b) On a kX +Hk2 = kXk2 + 2 hX;Hi+ kHk2 :

Donc kX +Hk = kXk
s
1 + 2

hX;Hi
kXk + o (kHk ) = kXk

�
1 +

hX;Hi
kXk + o (kHk )

�
lorsque H ! �!

0 :

D�où kX +Hk = kXk+
�
X

kXk ;H
�
+ o (kHk). On retrouve (unicité du DL1) que rf(X) =

X

kXk :

8) Rappel : jezj = eRe z, donc jtzj = etRe z = tRe z:

a) On a
��tz�1 e�t�� = tx�1 e�t intégrable (car tx�1 e�t �0 tx�1 et tx�1 e�t = O+1(t�2)).

b) On �xe y 2 R. Posons g(x; t) = tx+iy�1 e�t: On a x 7�! tx+iy�1 e�t est continue (pour t �xé):

On a
@g

@x
(x; t) = (ln t) tx+iy�1 e�t: Soit un segment arbitraire [a; b] �]0;+1[.

On a 8x 2 [�;+1[,
����@g@x(x; t)

���� �
(
(ln t) t��1 e�t si t < 1

(ln t) tb�1 e�t si t � 1
= '(t), avec ' intégrable sur ]0;+1[ (Bertrand).

Par le th de dérivation des intégrales paramétrées,
@f

@x
existe et vaut

@f

@x
(x; y) =

R +1
0

@g

@x
(x; t) dt:

b) On a
@f

@y
(x; y) = i

@f

@x
(x; y):

d) Soit (zn)n2N une suite dans U convergeant vers z 2 U . Posons fn(t) = tzn�1 e�t:

On a 8t 2]0;+1[, limn!+1 fn(t) = f(t), où f(t) = tz�1 e�t:

Posons z = x+ iy. Pour n � n0 assez grand,
1

2
x � xn � 2x. Posons a =

1

2
x et b = 2x:

Donc 8n � n0, jfn(t)j �
(
(ln t) ta�1 e�t si t < 1

(ln t) tb�1 e�t si t � 1
= '(t), avec ' intégrable sur ]0;+1[.

Par convergence dominée, limn!+1
R +1
0 fn(t) dt =

R +1
0 f(t) dt, c�est-à-dire limn!+1 �(zn) = �(z).

Par caractérisation séquentielle, � est continue sur U .

9) a) On considère 8t 2 R, g(t) = f(x+ tv). On a g0(t) = rf(x+ tv) � v :

Donc f(�!x +�!v )� f(�!x ) =
R 1
0 g

0(t) dt =
R 1
0 rf(x+ tv) � v dt:

b) Supposons (ii). Alors rf(x+ tv) � v = 0, car v appartient à l�orthogonal de F . D�où (i) par a).

Réciproquement, supposons (ii). On considère (x; v) 2 E � F?:

On a 8t 2 R, g(t) = f(x+ tv)� f(x) = 0. Donc g0(0) = 0, c�est-à-dire rf(x) � v = 0:

Comme v est arbitraire, rf(x) 2 (F?)? = F .

c) On prend F = Vect(e1; :::; er), où les ej sont les vecteurs de la base canonique.

D�où F? = Vect(er+1; :::; er+p):

(i) équivaut à : Pour tout (x; v) 2 E � F?, f(x+ v) = f(x):



On a cel équivaut à : f(x1; :::; xr; xr+1; :::; xp) = f(x1; :::; xr; 0; :::; 0):

En particulier, comme f est C2 et '(x1; :::; xr) = f(x1; :::; xr; 0; :::; 0), alors ' est C2.

(ii) équivaut à : Pour tout �!x 2 E, rf(x) 2 F .

Donc (i) équivaut à (ii) par b). Montrons désormais que (ii) équivaut à (iii).

La j-ième colonne (ou ligne) de la Hessienne Hf (x) contient les coe¢ cients du gradient de
@f

@xj
(x):

Or, une fonction est nulle ssi elle vaut 0 en
�!
0 et son gradient est nul.

Donc
@f

@xj
est nulle ssi

@f

@xj
(
�!
0 ) = 0 et la j-ième colonne de Hf (x) est nulle. Donc (ii) équivaut à (iii).

Addendum question 4) a) : Montrons l�unicité du DL2 :

Supposons �+ (V j X) + 1
2
(X j AX) + o(kXk2) = � + (W j X) + 1

2
(X j BX) + o(kXk2),

où � et � sont réels, V et W des vecteurs, A et B des matrices symétriques.

On montre d�abord que � = �, puis on montre (comme dans le cours que V =W ).

On a donc (X j AX) = (X j BX) + o(kXk2):

On �xe X et on considère t 7�! tX. On obtient t2(X j AX) = t2(X j BX) + o (t2) lorsque t 7�! 0:

On divise par t2 et on en déduit en faisant tendre t vers 0+, que (X j AX) = (X j BX):

On conclut alors en utilisant le lemme suivant :

Lemme : Soient A et B 2 Sn(R) telles que 8X 2 Rn, (X j AX) = (X j BX).

Première preuve : On a 8X 2 Rn, (X j (A�B)X) = 0.

Supposons par l�absurde A 6= B. Donc la matrice symétrique (A�B) n�est pas nulle.

Elle admet donc un vecteur propre X de valeur propre � 6= 0:

On a donc (X j (A�B)X) = � kXk2 6= 0, d�où une contradiction.

Seconde preuve (conseillée) :

On utilise l�identité de polarisation pour les formes bilinéaires symétriques :

on a en e¤et (X + Y j A(X + Y )) = (X j AX) + 2(X j AY ) + (Y j AY ), car A symétrique.

Donc 2(X j AY ) = (X + Y j A(X + Y ))� (X j AX)� (Y j AY ):

Autrement dit, la forme bilinéaire est entièrement dé�nie par la forme quadratique :

'(x; y) = 1
2(q(x+ y)� q(x)� q(y)), où q(x) = '(x; x) et ' forme bilinéaire symétrique.

On a donc 8(X;Y ) 2 Rn � Rn, (X j AY ) = (X j BY ):

En prenant X = Ei et Y = Ej , on obtient aij = bij . Donc on a bien A = B.


