
Interrogation no16. Corrigé

1) a) Avec le théorème spectral, on montre que supX2S(X jMX) = maxSp(M):

b) On a kAXk2 = (AX j AX) = (X j ATAX), donc N(A)2 = maxSp(ATA):

c) On a pour tout X 2 E, kAXk � N(A) kXk, car pour X non nul,
kAXk
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 � N(A):
Donc 8X 2 S, kABXk � N(A) kBXk � N(A)N(B) kXk = N(A)N(B), donc N(AB) � N(A)N(B):

d) Lorsque X décrit S, UX décrit S (car X = UUTX), donc N(AU) = N(A):

Autre preuve : (AU)T (AU) = U�1(ATA)U , donc Sp((AU)T (AU)) = Sp(ATA), et on conclut par b).

e) On a kAXk2 =
Pn
i=1(
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aijxj)

2: Par Cauchy-Schwarz, (
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Donc 8X 2 S, kAXk2 �
Pn
i=1

Pn
j=1 a

2
ij = NF (A)

2, d�où N(A) � NF (A):

Autre preuve : Les valeurs propres de ATA sont positives, car ATA 2 S+n (R).

Donc NF (A)2 = tr(ATA) � maxSp(ATA) = N(A)2:

On a kABXk1 = kA(BX)k1 � N(A) kBXk1 � N(A)N(B) kXk1, donc N(AB) � N(A)N(B):

2) a) Remarque : Il s�agit de prouver que N(A) est réel (c�est-à-dire < +1) et est atteint.

La fonction f : On(R)! R U 7�! tr(AU) =
P
i;j aijuji est continue.

Comme On(R) est compact (fermé borné) et non vide, f est bornée et atteint sa borne supérieure.

b) On considère U 2 On(R) tel que N(A) = tr(AU).

On prend V = �U 2 On(R). On a �N(A) = tr(AV ) � N(A), donc N(A) � 0:

c) Supposons N(A) = 0. Alors 8U 2 On(R), tr(AU) � 0:
Par linéarité de U 7�! tr(AU) surMn(R), on a 8M 2Mn(R), tr(AM) � 0.
Mais en considérant M et �M , on en déduit que tr(AM) = 0 pour toute matrice M 2Mn(R).

Donc A est orthogonal à toute matrice deMn(R) pour le psc (M;N) = tr(MTN). Donc A = On

Variante : On prend M = AT . D�où tr(AAT ) � 0, c�est-à-dire
P
i;j a

2
ij � 0, d�où A = On.

3) a) Comme les normes sont équivalentes,
P
kAnk1 converge.

Donc toutes les séries associées aux coordonnées convergent absolument, c�est-à-dire
P
An converge.

4) a) Remarque : On a AF = Vect(A;A2; :::; Ar), donc F stable par A ssi Ar 2 F .

On sait que A admet un polynôme annulateur non nul dont on note r le degré r.

Alors Ar 2 Vect(I; A; :::; Ar�1), c�est-à-dire F = Vect(I; A; :::; Ar�1) stable par A.

Autre preuve : la suite des sev Fp = Vect(I; A; :::; Ap�1) est croissant pour l�inclusion, donc constante par dimen-

sion, et ainsi il existe r 2 N tel que Fr = Fr+1, ce qui équivaut à Fr stable par A.

Variante : On considère r = minfk 2 N, (I; A; :::; Ak) liée g, qui existe car dimMp(R) = p2:

(I;A; :::; Ar�1) est libre et (I;A; :::; Ar) est liée, donc Ar 2 Vect(I;A; :::; Ar�1) = F stable par A.

Variante : La famille (I;A; :::; A(p
2)) est liée, donc une matrice Ar est combinaison linéaire des précédentes.

b) Comme F est stable par A, alors 8n 2 N, An 2 F , et plus généralement 8P 2 C[X], P (A) 2 F .
Or, B = limn!+1 Pn(A), où Pn(X) =

Pn
k=0 ukA

k. On a Pn(A) 2 F .
Comme F est fermé (en tant que sev de dimension �nie), alors B 2 F:

5) a) On a 8n 2 N�, kxn+1 � xnk = kf(xn)� f(xn�1)k � k kxn � xn�1k.



Donc 8n 2 N, kxn+1 � xnk � kn kx1 � x0k. Donc la série
P
kxn+1 � xnk converge.

A fortiori, la série de vecteurs
P
(xn+1 � xn) converge, c�est-à-dire (xn)n2N converge.

b) (existence) Considérons x = limn!+1 xn, où (xn)n2N est dé�nie au a) avec x0 arbitraire.

Comme f est lipschitzienne, f est continue, donc f(x) = x: D�où l�existence d�un point �xe.

(unicité) Soient x et y deux points �xes. On a kx� yk = kf(x)� f(t)k � k kx� yk, donc kx� yk = 0 car k < 1:

6) Remarque culturelle : Par le cours, on a vu que N(A) = sup1�i�n
Pn
j=1 jaij j :

a) (i) D�autre part, si � 2 Sp(A), il existe X non nult el que AX = �X, donc
kAXk1
kXk1

= j�j :

Ainsi, j�j � N(A), donc �(A) � N(A).

(ii) Si A = Diag(�1; :::; �n), alors AX = (�1x1; :::; �pxp). On a sup1�j�n(j�j j) = �(A):
Donc kAXk1 � �(A) kXk1, avec des cas d�égalité. Donc N(A) = �(A):

(iii) En revanche, en prenant A =
�
0 1
0 0

�
, on a �(A) = 0 < 1 = N(A):

b) Il existe P 2 GLn(C) telle que P�1AP = D diagonale. On prend N 0(B) = N(PBP�1) :

On véri�e aisément que N 0 est une norme surMn(C).

On a donc N 0(A) = N(D) = �(D) = �(A), car A et D sont semblables.

Remarque : N 0 est aussi une norme subordonnée, donc en particulier une norme d�algèbre.

c) Par b), on peut supposer A diagonalisable.

On sait qu�il existe P 2 GLn(C) telle que P�1AP = T =
�
� "
0 �

�
.

On prend N 0(B) = N(PBP�1). On a N 0(A) = N(T ) = max(j�j+ "; j�j) � �(A) + ":

Remarque : La propriété est vraie en toute dimension, car on peut toujours trouver une matrice T semblable à A

dont les coe¢ cients non diagonaux sont en module inférieurs ou égaux à ":

7) � est l�ensemble des matrices de symétrie, c�est-à-dire diagonalisables de spectre inclus dans f�1; 1g.

- � n�est pas borné, car 8n 2 N, An =
�
1 n
0 �1

�
2 � et la suite (An)n2N� n�est pas bornée.

On peut aussi utiliser les matrices An =
�

0 n
1=n 0

�
2 � pour tout n 2 N�:

- � est fermé : si A = limn!+1An, avec An 2 �, alors A2 = limn!+1(An)2 = I2, donc A 2 �:
- � est fermé et distinct deM2(C), donc n�est pas dense (son adhérence est �).

- � n�est pas ouvert : I2 = limn!+1Diag(1; 1 + 1
n) est limite de matrices n�appartenant pas à �:

- � n�est pas convexe : I2 et �I2 appartiennent à �, mais leur moyenne O2 n�appartient pas à �:

b) (i) Supposons A 2 � distinct de I2 et �I2. Alors A est semblable à Diag(�1; 1):
Il existe donc P 2 GL2(C) telle que A = P Diag(1;�1)P�1:

Posons An = P
�
1 1=n
0 �1

�
P�1. On a limn!+1An = A et An 2 � et An 6= A. Donc A n�est pas isolé dans A.

(ii) Montrons que I2 est isolé.

Notons que tr I2 = 2 et que pour tout A 2 � distinct de I2, trA = 0 ou �2:
Comme B 7�! trB est continue, alors il n�existe aucune suite de �0 convergeant vers A.

8) (ii) implique (i) aisément :
R 1
0 z(t) dt = e

i�
R 1
0 �(t) dt, donc

���R 10 z(t) dt��� = R 10 �(t) dt = R 10 jz(t)j dt:



La réciproque est beaucoup plus compliqué. Posons
R 1
0 z(t) dt = Ae

i�:

On considère alors f(t) = Re(z(t)e�i�). On a f : [0; 1]! R continue et jf(t)j � jz(t)j.
Or,

���R 10 f(t) dt��� � R 10 jf(t)j dt � R 10 jz(t)j dt: Mais, avec (i), on a ���R 10 f(t) dt��� = A = R 10 jz(t)j dt:
Donc nécessairement, f est de signe constant et 8t 2 [0; 1], jf(t)j = jz(t)j :
Donc z(t)e�i� est réel de signe constant. On en déduit f(t) = ��(t)ei�: Et � continue car f continue.

Remarque : Soit X : [0; 1]! Rn continue, avec Rn muni de la norme euclidienne canonique .

On montre de façon analogue que les assertions suivantes sont équivalentes :

(i)



R 10 X(t) dt


 = R 10 kX(t)k dt

(ii) Il existe � : [0; 1]! R+ continue et V 2 Rn tels que 8t 2 [0; 1], X(t) = �(t)V:



4) a) Comme les normes sont équivalentes,
P
kAnk1 converge.

Donc toutes les séries associées aux coordonnées convergent absolument, c�est-à-dire
P
An converge.

b) On a N
�
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converge, alors
P
N

�
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�
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Donc M(t) est bien dé�nie. On �xe désormais i et j 2 [[1; p]].

Posons fij(t) =
�
tnAn

n!

�
ij

: On a sup[��;�] jfij(t)j � �n




Ann!






1
:

Comme
P
N

�
�nAn

n!

�
converge, alors
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�n
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1
converge (car les normes sont équivalentes).

On en déduit que
P
fij converge normalement sur [��; �], donc Mij =

P+1
n=0 fij est continue.

Comme i et j sont arbitraires, M est continue.

Remarque : On montre de même (en considérant
P
f 0ij) que M est de classe C1, et que M 0(t) = AM(t):

8) a)
R 1
0 hV;X(t)i dt �

R 1
0 kV k kX(t)k dt par l�inégalité de Cauchy-Schwarz : hV;X(t)i � kV k kX(t)k :

En cas d�égalité, on a
R 1
0 '(t) dt = 0, où '(t) = kV k kX(t)k � hV;X(t)i.

Comme ' est continue et positive, l�intégrale est nulle ssi 8t, '(t) = 0:

Cette condition implique que X(t) et V sont colinéaires de même sens, et comme V n�est pas nul, il existe �(t)

tel que X(t) = �(t) V: Comme X est continue, alors � est continue (on se place par exemple dans une base où le

premier vecteur est V : �(t) est alors la coordonnée de X(t) dans cette base).

b) (ii) implique (i) : On a en e¤et :


R 10 X(t) dt


 = 


�R 10 �(t) dt�V 


 = �R 10 �(t) dt� kV k = �R 10 �(t) kV k dt� = R 10 kX(t)k dt:
Réciproquement, supposons (i) :




R 10 X(t) dt


 � R 10 kX(t)k dt.
Posons V =

R 1
0 X(t) dt : Si V est nul, alors

R 1
0 kX(t)k dt = 0, donc X est dientiquement nul, d�où (ii).

Supposons désormais V non nul. L�idée est de projeter la relation sur la droite RV :

Alors
R 1
0 hV;X(t)i dt =

D
V;
R 1
0 X(t) dt

E
par linéraité de Y 7�! hV; Y i :

Donc
R 1
0 hV;X(t)i dt = hV; V i = kV k

2 = kV k
R 1
0 kX(t)k dt =

R 1
0 kV k kX(t)k dt:

On conclut en utilisant a).


