Interrogation n°16. Barème sur 24 pts

1) [3 pts] a) On munit \mathbb{R}^n du produit scalaire canonique $(X \mid Y) = X^T Y$.

Justifier que pour $X \in \mathbb{R}^n$ fixé, l'application $u : \mathcal{M}_n(\mathbb{R}) \to \mathbb{R}$ $A \longmapsto (X \mid AX)$ est continue.

b) On note $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales de $\mathcal{M}_n(\mathbb{R})$.

Montrer brièvement que $O_n(\mathbb{R})$ est une partie compacte (= fermée bornée) de $\mathcal{M}_n(\mathbb{R})$.

c) On note $S_n^+(\mathbb{R})$ l'ensemble des matrices réelles symétriques positives.

Montrer brièvement que $S_n^+(\mathbb{R})$ est une partie fermée de $\mathcal{M}_n(\mathbb{R})$.

Indication: On rappelle qu'une intersection (arbitraire) de fermés est fermée.

2) [2 pts] Soient A et $B \in \mathcal{M}_n(\mathbb{C})$ deux matrices semblables. Montrer que

$$\lim_{k \to +\infty} A^k = O_p \text{ ssi } \lim_{k \to +\infty} B^k = O_p$$

Remarque : Il y a plusieurs preuves possibles, l'une utilisant une application linéaire (donc continue), une autre utilisant une norme d'algèbre sur $\mathcal{M}_n(\mathbb{C})$ qu'on notera $\| \|$ et dont on sait qu'elle existe.

- 3) On munit \mathbb{C}^n de la norme $||X|| = \sum_{i=1}^n |x_i|$ et on munit $\mathcal{M}_n(\mathbb{C})$ de la norme $N(A) = \sup_{X \neq 0} \frac{||AX||}{||X||}$. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on note $\rho(A) = \max_{\lambda \in \operatorname{Sp}(A)} |\lambda|$ le rayon spectral de A.
- a) [1 pt] Montrer que $\rho(A^k) = \rho(A)^k$.
- b) [1.5 pt] Montrer que $N(A^k) \ge \rho(A)^k$. En déduire que si $\lim_{k \to +\infty} A^k = O_n$, alors $\rho(A) < 1$.
- c) [2 pts] Montrer que $N(A) = \max(\|A_1\|, ..., \|A_n\|)$, c'est-à-dire $N(A) = \max_{1 \le j \le n} (\sum_{i=1}^{n} |a_{ij}|)$.

Indications: On posera $M = \max(\|A_1\|, ..., \|A_n\|)$. On rappelle que si Y = AX, alors $Y = \sum_{j=1}^{n} x_j A_j$.

- d) [1 pt] Montrer que N est une norme d'algèbre, c'est-à-dire $\forall (A,B) \in \mathcal{M}_n(\mathbb{R})^2, N(AB) \leq N(A)N(B)$.
- e) [1 pt] Pour $P \in GL_n(\mathbb{C})$, on pose $N_P(A) = N(P^{-1}AP)$. On vérifie (admis ici) que N_p est une norme.

Montrer que si $N_P(A) < 1$, alors $\lim_{k \to +\infty} A^k = O_n$.

f) (\bigstar) On admet la propriété de diagonalisation à ε près de toute matrice A: pour tout $\varepsilon > 0$, la matrice A est semblable à une matrice triangulaire supérieure T dont les coefficients non diagonaux sont en module $\leq \varepsilon$.

[1.5 pt] Montrer que si $\rho(A) < 1$, alors $\lim_{k \to +\infty} A^k = O_n$.

4) Soit (E, || ||) un espace euclidien de dimension $n \ge 1$. On note S la sphère unité.

Soit u un endomorphisme symétrique, c'est-à-dire $\forall (x,y) \in E^2, \langle u(x), y \rangle = \langle x, u(y) \rangle$.

On va prouver le théorème spectral (ici non supposé connu) : u est diagonalisable dans une BON.

On pose $U = E \setminus \{\overrightarrow{0}\}$ et on considère la fonction continue $f: U \to \mathbb{R}$ définie par $f(x) = \frac{\langle x, u(x) \rangle}{\|x\|^2}$.

- a) [1.5 pt] Montrer avec soin que f est bornée et qu'il existe $x_0 \in S$ tel que $f(x_0) = \sup_{x \in U} f(x)$.
- b) [1 pt] Soit $h \in E$. Montrer que $\varphi : t \longmapsto f(x_0 + th)$ est bien définie au voisinage de 0 et que $\varphi'(0) = 0$.

c) [0.5 pt] On admet le $DL_1(0)$ de $\varphi(t)$:

$$\forall t \in V, \varphi(t) = \frac{\langle x_0, u(x_0) \rangle + 2t \langle u(x_0), h \rangle + t^2 \|h\|^2}{1 + 2t \langle x_0, h \rangle + t^2 \|h\|^2} = \langle x_0, u(x_0) \rangle + 2 \left(\langle u(x_0), h \rangle - \langle x_0, u(x_0) \rangle \langle x_0, h \rangle \right) t + \mathfrak{o}(t).$$

Déduire de b) qu'il existe $\lambda \in \mathbb{R}$ tel que $\forall h \in E, \langle u(x_0), h \rangle = \lambda \langle x_0, h \rangle$.

- d) [0.5 pt] En déduire que x_0 est un vecteur propre de u.
- e) Question supplémentaire : Démontrer le théorème spectral.
- 5) On munit \mathbb{C}^p de la norme $||X|| = \sum_{i=1}^p |x_i|$ et $\mathcal{M}_p(\mathbb{C})$ de la norme d'algèbre $N(A) = \sup_{X \neq 0} \frac{||AX||}{||X||}$.

Soit
$$A \in \mathcal{M}_p(\mathbb{C})$$
 vérifiant $N(A) \leq 1$. On pose $\forall n \in \mathbb{N}$, $B_n = \frac{I_p + A + \dots + A^n}{n+1} = \frac{\sum_{k=0}^n A^k}{n+1}$.

On se propose de prouver que $(B_n)_{n\in\mathbb{N}}$ converge.

- a) [0 pt] Que vaut B_nX lorsque $X \in \text{Ker}(A I_p)$?
- b) [1.5 pt] Montrer que pour tout $X \in \text{Im}(A I_p)$, $\lim_{n \to +\infty} B_n X = 0$.

Indication: Justifier d'abord qu'il existe un vecteur Y tel que $B_nX = \frac{1}{n+1}(A^{n+1}Y - Y)$.

- c) [1 pt] En déduire que $\operatorname{Im}(A I_p) \oplus \operatorname{Ker}(A I_p) = \mathbb{C}^p$.
- d) [1 pt] Montrer que $(B_n)_{n\in\mathbb{N}}$ converge dans $\mathcal{M}_p(\mathbb{C})$ et préciser la nature de la matrice limite.
- 6) Extension du domaine du lemme de Rolle

Soit $X:[0,1]\to\mathbb{R}^2$ une fonction de classe C^1 à valeurs dans \mathbb{R}^2 telle que X(0)=X(1)

Remarque: L'exemple $X(t) = (\cos 2\pi t, \sin 2\pi t)$ montre qu'on peut avoir $\forall t \in [0, 1], X'(t) \neq \overrightarrow{0}$.

a) [1 pt] Soit v un vecteur de \mathbb{R}^2 . Montrer qu'il existe $t \in [0,1]$ tel que $\langle X'(t), v \rangle = 0$.

 $Remarque: \langle \ , \ \rangle$ désigne le produit scalaire sur \mathbb{R}^2 .

b) [1 pt] On pose $\Delta = \{X'(t), t \in [0,1]\}$. On note $C(\Delta)$ l'enveloppe convexe de Δ .

En considérant $\int_0^1 X'(t) dt$, montrer que $\overrightarrow{0}$ appartient à l'adhérence de $C(\Delta)$.

- 7) On considère le DSE de $\sqrt{1+x} = \sum_{n=0}^{+\infty} c_n x^n$ sur]-1,1[.
- a) [0.5 pt] Expliciter sans justification les valeurs de c_0 , c_1 et c_2 .
- b) [1 pt] On munit $\mathcal{M}_p(\mathbb{R})$ d'une norme d'algèbre, c'est-à-dire vérifiant $||AB|| \leq ||A|| \, ||B||$.

Soit $A \in \mathcal{M}_p(\mathbb{R})$ telle que ||A|| < 1. Justifier l'existence de $M = \sum_{n=0}^{+\infty} c_n A^n$.

c) Question supplémentaire (\bigstar) Avec les hypothèses de b), montrer que $M^2 = I_p + A$.

Indication: Noter d'abord que les familles $(|c_n(A^n)_{i,j}|)_{n\in\mathbb{N}}$ sont sommables, où B_{ij} désigne le coefficient d'indice (i,j) de la matrice B. Et considérer $\sum_{j=1}^{p} \left(\sum_{n=0}^{+\infty} c_n(A^n)_{i,j}\right) \left(\sum_{n=0}^{+\infty} c_n(A^n)_{j,k}\right)$

d) [0.5 pt] On prend p = 3, et on considère $N \in \mathcal{M}_3(\mathbb{R})$ une matrice nilpotente.

Trouver une matrice M (exprimée à l'aide de N) telle que $M^2=I_p+N.$

Justifier votre réponse (sans admettre c)).