Interrogation n°15. Corrigé

1) - $N(X) \ge 0$, avec égalité ssi $\forall t \in [0,1], |x+ty| = 0$ sonc ssi (x,y) = (0,0) (en prenant t=0 et t=1).

- On a
$$N(\lambda X) = N(\lambda x, \lambda y) = \int_0^1 |\lambda x + \lambda t y| \ dt = |\lambda| \, N(X)$$

- On a
$$N(X+X') = \int_0^1 |(x+x') + \lambda(y+y')| dt \le \int_0^1 (|x+ty| + |x'+ty'|) dt = N(X) + N(X')$$
.

2) a) Première preuve : Soit $(f_n)_{n\in\mathbb{N}}$ une suite convergeant vers f pour $\| \|_{\infty}$.

La convergence uniforme implique la convergence simple, donc $\lim_{n\to+\infty} (f_n(0), f_n(1)) = (f(0), f(1))$.

Par la caractérisation séquentielle, u est continue.

Seconde preuve : Les normes sur \mathbb{R}^2 sont équivalentes. On prend $\|(x,y)\| = \max(|x|,|y|)$.

On a u est linéaire et $\|u(f)\| = \max(|f(0)|, |f(1)|) \le \|f\|_{\infty}$, alors u est 1-lipschitzienne donc continue.

b) On a
$$A = u^{-1}(B)$$
, où $B = \{(x, y) \in \mathbb{R}^2 \mid xy < 0\}$.

Or, B est un ouvert de \mathbb{R}^2 (défini par une inégalité stricte et on a $(x,y) \longmapsto xy$ continue). Donc A ouvert.

c) Soit $f = \lim_{n \to +\infty} f_n$ appartenant à l'adhérence de A, avec $f_n \in A$. On a $\forall n \in \mathbb{N}, f_n(0)f_n(1) < 0$.

Par passage à la limite, $f(0)f(1) \le 0$. Donc A n'est pas dense (par exemple, 1 n'est pas dans l'adhérence).

3) a) On prend
$$P_n(X) = 1 + X + X^2 + ... + X^n$$
. On a $N(P_n) = 1$ et $||P_n|| \ge P_n(1) = n + 1$.

Ainsi, $\lim_{n\to+\infty} \frac{\|P_n\|}{N(P_n)} = 1$, donc les normes $\| \|$ et N ne sont pas équivalentes sur E.

b) $E_n = \mathbb{R}_n[X]$ est de dimension finie, donc les normes sont équivalentes.

Donc il existe $\alpha_n > 0$ tel que $\forall P \in \mathbb{R}_n[X], ||P|| \ge \alpha_n N(P)$.

Or, pour tout $P \in E_n$, on a $N(E_n) \ge 1$ (coefficient dominant), donc $||P|| \ge \alpha_n$, et a fortiori $\inf_{P \in E_n} ||P|| > 0$.

Remarque : Une autre solution consiste à montrer que E_n est un fermé dans $\mathbb{R}_n[X]$.

La distance de 0 à E_n est donc atteinte pour la norme $\|\ \|$ et $0 \notin \Delta$, donc $d(0, E_n) > 0$.

4) a) L'application $f: K \to \mathbb{R}$ $x \longmapsto \|x - a\|$ est continue car 1-lipschitzienne.

Comme K compact non vide, alors f atteint sa borne inférieure.

b) On a
$$||x - a|| = ||y - a|| = m$$
.

Or,
$$z - a = \frac{1}{2}(x - a) + \frac{1}{2}(y - a)$$
, donc $||z - a|| \le \frac{1}{2}m + \frac{1}{2}m = m$.

Comme K est convexe, alors $z \in K$, donc ||z - a|| = m par définition de m. Ainsi, $z \in \Delta$.

Remarque culturelle : On montre de façon analogue que Δ est convexe. Et en fait, on a aussi Δ compacte.

5) a) Première méthode : Considérons
$$F(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)(2n+2)} x^{2n+2}$$
.

On a F de classe C^1 sur [0,1[(série entière de rayon R=1), continue sur [0,1] par convergence normale.

Donc $F(1) = \int_0^1 F'(x) \ dx$.

En effet, pour tout x < 1, $F(x) = \int_0^x F'(t) dt$, et on fait tendre x vers 1⁻ (d'où le résultat par continuité de F en 1).

Or,
$$\forall x \in [0, 1[, F'(x)] = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)} x^{2n+1} = \arctan x$$
. Donc $F(1) = \int_0^1 (\arctan x) \ dx$.

Seconde méthode : On a $\forall x \in [0, 1[, \arctan(x) = \sum_{n=0}^{+\infty} f_n(x), \text{ avec } f_n(x) = \frac{(-1)^n}{(2n+1)}x^{2n+1}]$

On a $\int_0^1 f_n(x) dx = \frac{(-1)^n}{(2n+1)(2n+2)}$ et $\int_0^1 |f_n(x)| dx = \frac{1}{(2n+1)(2n+2)}$. On conclut par ITT.

- b) En intégrant par parties, on obtient $S = [x \arctan(x)]_0^1 \int_0^1 \frac{x}{1+x^2} dx = \frac{\pi}{4} \frac{1}{2} \left[\ln(1+x^2) \right]_0^1 = \frac{\pi}{4} \frac{1}{2} \ln 2$.
- **6)** a) La suite $(a_n)_{n\in\mathbb{N}}$ n'est pas nulle. donc il existe un plus petit entier p tel que $a_p\neq 0$.

On a alors $f(x) \sim a_p x^p$ par Taylor-Young (on rappelle que f est de classe C^{∞} et que $a_n = f^{(n)}(0)/n!$).

b) Supposons par l'absurde que $(a_n)_{n\in\mathbb{N}}$ n'est pas nulle. On a par a), $f(x) \sim \lambda x^p$.

ce qui contredit $f(\frac{1}{k}) = 0$ lorsque $k \to +\infty$.

Remarque: Plus généralement, s'il existe une suite complexe $(z_n)_{n\in\mathbb{N}}$ convergeant vers 0 et telle que $\forall n\in\mathbb{N}$, $f(z_n)=0$, alors $\forall n\in\mathbb{N}, a_n=0$ (appelé principe des zéros isolés).

c) On pose $g(x) = f(x) - \frac{1}{1+x}$. On a alors g DSE sur]-R',R'[, où $R' = \min(1,R)$.

On suppose que $\forall k \in \mathbb{N}^*$, $g\left(\frac{1}{k}\right) = 0$. Par b), g est nulle, donc $f(x) = \frac{1}{1+x}$.

Par unicité du DSE, on a $a_n = (-1)^n$ et R = 1.

7) a) On a $\lambda \mu = -v \neq 0$, donc λ et μ non nuls. La suite $(u_n)_{n \in \mathbb{N}}$ est une suite de Fibonacci :

il existe $(\alpha, \beta) \in \mathbb{C}^2$ tels que $\forall n \in \mathbb{N}, \ a_n = \alpha \lambda^n + \beta \mu^n$ ou $\forall n \in \mathbb{N}, \ a_n = (\alpha + \beta n) \lambda^n$ (si $\lambda = \mu$).

Le rayon de convergence des séries entières $\sum \lambda^n$ et $\sum n\lambda^n$ vaut $\frac{1}{|\lambda|}$. Donc $R \ge \min\left(\frac{1}{|\lambda|}, \frac{1}{|\mu|}\right) > 0$..

b) Première méthode:

Soit |z| < R. On a $f(z) = z + \sum_{n=0}^{+\infty} a_{n+2} z^{n+2} = z + \sum_{n=0}^{+\infty} (u a_{n+1} + v a_n) z^{n+2} = z + (u z + v z^2) f(z)$.

Donc
$$f(z) = \frac{z}{1 - uz - vz^2}$$
.

 $Seconde\ m\'ethode:$

Si
$$\lambda \neq \mu$$
, on a $a_n = \alpha \lambda^n + \beta \mu^n$, donc $f(z) = \frac{\alpha}{1 - \lambda z} + \frac{\beta}{1 - \mu z}$.

Comme
$$a_0 = 0$$
 et $a_1 = 1$, alors $\begin{cases} \alpha + \beta = 0 \\ \alpha \lambda + \beta \mu = 1 \end{cases}$, donc $\alpha = -\beta = \frac{1}{\lambda - \mu}$.

Remarque : On procède de même si $\lambda = \mu$.

Remarque : On a
$$(1 - \lambda z)(1 - \mu z) = 1 - (\lambda + \mu)z + (\lambda \mu)z^2 = 1 - uz - vz^2$$
.

On retrouve donc l'expression précédente en fonction de u et v, en calculant la fraction.

8) a) Il suffit que la série de fonction $\sum_{n=0}^{+\infty} n(n-1)...(n-k+1)a_nt^n$ converge normalement sur [0,1].

Comme $n(n-1)...(n-k+1) \sim n^k$, cette condition équivaut à : $\sum_{n=0}^{+\infty} n^k a_n < +\infty$.

Remarque: En fait, c'est une condition nécessaire et suffisante (cf propriété au programme, admise).

b) On a, pour
$$t \in [0,1]$$
, $G_X(t) = \sum_{n=0}^{+\infty} pq^n t^n = \frac{p}{1-qt}$. Donc $G_X'(t) = \frac{pq}{(1-qt)^2}$ et $G_X''(t) = \frac{2q^2p}{(1-qt)^3}$

Les séries $\sum_{n=0}^{+\infty} n^k a_n$ convergent pour tout $k \in \mathbb{N}$. Par a), on a donc $E(X) = G'_X(1)$ et $E(X^2) = G''_X(1) + G'_X(1)$.

On en conclut
$$E(X) = \frac{pq}{p^2} = \frac{q}{p} = \frac{1}{p} - 1$$
 et $E(X^2) = \frac{2q^2p}{p^3} + \frac{q}{p} = \frac{2q^2}{p^2} + \frac{q}{p} = \frac{q(2q+p)}{p^2} = \frac{q(1+q)}{p^2}$.

9) a) On a ch
$$t \ge \frac{1}{2}e^t$$
, donc $a_n = \int_0^{+\infty} \frac{t^n}{\operatorname{ch} t} dt \le a_n = 2 \int_0^{+\infty} \frac{t^n e^{-t}}{\operatorname{ch} t} dt = 2\Gamma(n+1) = n!$

b) On a
$$\frac{\cos(tx)}{\cot t} = \sum_{n=0}^{+\infty} (-1)^n \frac{t^{2n}}{(2n)!} x^{2n}$$
. On fixe $x \in]-1,1[$ et on pose $f_n(t) = (-1)^n \frac{t^{2n}}{(2n)!} x^{2n}$.

On a
$$\int_0^{+\infty} |f_n(t)| dt = \int_0^{+\infty} \frac{t^{2n}}{(2n)!} x^{2n} = \frac{a_{2n}}{(2n)!} x^{2n} \le x^{2n} \text{ par a}$$
. Donc $\sum \int_0^{+\infty} |f_n(t)| dt$ converge.

D'autre part, $f: t \longmapsto \frac{\cos(tx)}{\operatorname{ch} t}$ est continue.

Donc par ITT, $F(x) = \sum_{n=0}^{+\infty} \int_0^{+\infty} f_n(t) dt = \sum_{n=0}^{+\infty} (-1)^n \frac{a_{2n}}{(2n)!} x^{2n}$. Donc F est DSE de rayon $R \ge 1$.

10) a) Supposons $f \in E_0$ définie par $f(x) = \sum_{n=0}^{+\infty} a_n x^n$.

Alors $F(x) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^n$, avec en particulier $F(0) = a_0 = f(0)$.

Donc $F \in E_0$ et ainsi, u est bien défini de E_0 dans E_0 .

On a $u(f) = \lambda f$ ssi $\forall n \in \mathbb{N}$, $\frac{a_n}{n+1} = \lambda a_n$ car deux séries entières coïncidant sur un voisinage de 0^+ sont égales.

Supposons f non identiquement nulle. Il existe donc $p \in \mathbb{N}$ tel que $a_p = 0$. Donc $\lambda = \frac{1}{p+1}$.

De plus, on a alors nécessairement $\forall n \neq p, \ a_n = 0, \ \operatorname{car} \frac{1}{n+1} \neq \frac{1}{p+1}.$

On en conclut que les seules valeurs propres sont les $\lambda = \frac{1}{p+1}$, et qu'alors $E_{\lambda} = \mathbb{R}x^{p}$.

b) Remarque: F est bien continue en 0, donc v est bien défini.

Supposons $v(f) = \lambda f$. Alors $\lambda x f(x) = F(x)$, donc $\lambda x F'(x) = F(x)$.

Si $\lambda = 0$, alors F est identiquement nulle, donc f aussi. Donc 0 n'est pas valeur propre de v

Supposons $\lambda \neq 0$. Alors $F(x) = Kx^{1/\lambda}$, donc f(x) est de la forme $Lx^{1/\lambda-1}$.

Comme f est continue en 0, alors $\frac{1}{\lambda}-1\geq 0$, c'est-à-dire $\lambda\in]0,1].$ Réciproque aisée.

On en déduit que les valeurs propres de v sont les $\lambda \in]0,1]$, et que $E_{\lambda} = \mathbb{R}x^{1/\lambda-1}$.