Interrogation n°13. Barème sur 23.5 pts

- 1) [2 pts] On considère $S(x) = \sum_{n=1}^{+\infty} \cos(nx) \exp(-\sqrt{n}x)$.
- a) Montrer que S est bien définie et continue sur $]0, +\infty[$.
- b) Déterminer $\lim_{x\to+\infty} S(x)$.
- 2) [2 pts] Soit $X_1, ..., X_N$ des v.a. réelles (non nécessairement indépendantes) de même loi que X.

On suppose que X suit une loi gémétrique (à valeurs dans \mathbb{N}^*) de paramètre p. On pose $Y = \max(X_1, ..., X_N)$.

- a) On pose q = 1 p. Montrer que pour tout $n \in \mathbb{N}$, $P(Y > n) \leq Nq^n$.
- b) On suppose $X_1, ..., X_n$ mutuellement indépendantes. Exprimer P(Y > n) en fonction de q, n et N.
- 3) [2 pts] Soient X et Y des v.a. indépendantes qui suivent des lois de Poisson.

On suppose $X \hookrightarrow \mathcal{P}(\lambda)$ et $Y \hookrightarrow \mathcal{P}(\mu)$, avec λ et $\mu > 0$.

- a) Préciser sans justification la loi de X + Y.
- b) On pose $p = \frac{\lambda}{\lambda + \mu}$. Montrer que la loi conditionnelle de X sachant que X + Y = n est la loi binomiale $\mathcal{B}(n, p)$.
- 4) Soient X et Y deux variables aléatoires entières indépendantes sur un espace probabilisé (Ω, \mathcal{A}, P) .

On considère de plus une variable Z indépendante de (X,Y) et qui suit une loi de Bernoulli de paramètre p.

On note $G_X(z)$ et $G_Y(z)$ les séries génératrices respectives de X et Y. On pose q=1-p.

- a) [0.5 pt] On considère S = X + Y. Expliciter sans justification $G_S(z)$ et E(S) en fonction de X et Y.
- b) [2 pts] On considère la variable $T = \begin{cases} X \text{ si } Z = 1 \\ Y \text{ si } Z = 0 \end{cases}$. Expliciter P(T = n) en justifiant votre réponse.

En déduire sans justification la série génératrice de T et l'espérance E(T) en fonction de X, Y et p.

5) Soit $X: \Omega \to \mathbb{N}$ une variable aléatoire à valeurs entières. On pose $\forall n \in \mathbb{N}, a_n = P(X = n)$.

On suppose qu'il existe un réel positif $\mu \in [0, 1[$ tel que $a_n = O(\mu^n)$ lorsque $n \to +\infty$.

On pose $\forall \theta \in [0, +\infty[, L(\theta) = E(e^{-\theta X}).$

a) [2 pts] Montrer que $L:\theta\longmapsto E(e^{-\theta X})$ est de classe C^∞ sur $[0,+\infty[$, et que

$$\forall k \in \mathbb{N}, \forall \theta \in [0, +\infty[, L^{(k)}(\theta) = (-1)^k E(X^k e^{-\theta X})]$$

b) [1 pt] Soit $p \in \mathbb{N}$. On suppose $\forall \theta \in [0, +\infty[, L(\theta) = e^{-p\theta}]$.

Montrer que $\forall k \in \mathbb{N}, E(X^k) = p^k$, et en déduire (avec $k \in \{1, 2\}$) que X est constante presque sûrement.

6) Marche aléatoire sur un polygone à N côtés, où N est impair. Soit 0 .

On note $U_n=\{1,\omega,\omega^2,...,\omega^{N-1}\}$ l'ensemble des racines N-ième de l'unité, avec $\omega=e^{2i\pi/N}$.

On considère une chaîne de Markov $(X_n)_{n\in\mathbb{N}}$ de variables aléatoires à valeurs dans U_n .

On suppose que $\forall n \in \mathbb{N}, \forall k \in \mathbb{Z}, P(X_{n+1} = \omega^k \mid X_n = \omega^{k-1}) = p$ et $P(X_{n+1} = \omega^k \mid X_n = \omega^{k+1}) = q = 1 - p$.

On pose $Z_n = P(X_n = \omega^k)_{0 \le k < N}$.

- a) [1 pt] Expliciter sans justification une matrice $A \in \mathcal{M}_N(\mathbb{R})$ telle que $Z_n = A^n Z_0$.
- b) [2 pts] On admet que A est diagonalisable et que les valeurs propres de A sont les $p\omega^k + q\omega^{-k}$, avec $0 \le k < N$. Expliquer brièvement comment on peut en déduire que $\forall k \in \mathbb{Z}$, $\lim_{n \to +\infty} P(X_n = \omega^k) = \frac{1}{N}$.
- c) [1 pt] (\bigstar) On considère la matrice de permutation cyclique $J=(E_2,E_3,...,E_{N-1},E_1)$.

On sait que le polynôme caractéristique de J est $\chi_J(x) = x^N - 1$. Justifier la propriété sur A admise au b).

7) On dit qu'une v.a. $Y: \Omega \to \mathbb{N}$ est une somme de Bernoulli ssi il existe une famille $(X_1, ..., X_n)$ de variables de Bernoulli indépendantes telle que Y_n a même loi que $X_1 + ... + X_n$.

Remarque : Les v.a. de Bernoulli $X_1,...,X_n$ sont indépendantes mais n'ont pas a priori même loi.

- a) [1 pt] On pose $Y_n = \sum_{k=1}^n X_k$. Montrer que $V(Y_n) \leq E(Y_n)$.
- b) [2 pts] Soit $P_n(t) = a_0 + a_1 t + ... + a_n t^n$ un polynôme réel \hat{a} coefficients positifs et vérifiant P(1) = 1.

On suppose P_n scindé sur \mathbb{R}

Montrer qu'il existe une variable aléatoire Y_n somme de Bernoulli telle que $\forall t \in [0,1], \ G_{Y_n}(t) = P_n(t)$.

- c) [0.5 pt] Déduire de a) et b) que $P_n''(1) \leq P_n'(1)^2.$
- d) Question supplémentaire. Proposer une autre preuve en montrant d'abord que $\left(\frac{P'}{P}\right)' \leq 0$.
- 8) Soit $(X_n)_{n\in\mathbb{N}}$ une suite de v.a. de Poisson i.i.d. de paramètre $\lambda>0$. On pose $S_n=\sum_{k=1}^n X_k$.
- a) [1 pt] Montrer que $E(e^{tS_n}) = e^{n\lambda(e^t-1)}$.
- b) [0.5 pt] Soit $\varepsilon > 0$. On pose $\varphi(t) = \lambda(e^t 1 t) \varepsilon t$. Montrer qu'il existe t > 0 tel que $\varphi(t) < 0$.
- c) [1 pt] En déduire qu'il existe K > 0 indépendant de n tel que $\forall n \in \mathbb{N}^*, P\left(\frac{S_n}{n} \ge \lambda + \varepsilon\right) \le e^{-Kn}$.
- d) [1 pt] (\bigstar) On montre de même ($admis\ ici$) qu'il existe L>0 tel que $\forall n\in\mathbb{N}^*,\ P\left(\left|\frac{S_n}{n}-\lambda\right|\geq\varepsilon\right)\leq 2e^{-Ln}$.

On considère pour $n \in \mathbb{N}^*$ et $k \in \mathbb{N}^*$ les événements $A_{k,n} : \left| \frac{S_n}{n} - \lambda \right| < \frac{1}{k}$.

Montrer que $B_k = \bigcap_{m \in \mathbb{N}^*} \left(\bigcup_{n \geq m} \overline{A_{k,n}} \right)$ est négligeable. En déduire (avec $\overline{B_k}$) que presque sûrement, $\frac{S_n}{n} \to \lambda$.

9) [1 pt] (\bigstar) Soit $f:[a,b]\to\mathbb{R}$ une application de classe C^1 . Soit $\varepsilon>0$.

Montrer qu'il existe un polynôme P tel que $||f - P||_{\infty} + ||f' - P'||_{\infty} \le \varepsilon$, où $||g||_{\infty} = \sup_{[a,b]} |g|$.

On rappelle le th de Stone-Weierstrass: toute fonction continue sur un segment est limite uniforme de polynômes.