Interrogation n°9. Corrigé

- 1) a) Les (n-1) premières colonnes de $A \lambda I_n$ sont indépendantes (car échelonnées : aucune colonne n'est combinaison linéaire des précédentes). Donc $\operatorname{rg}(A \lambda I_n) \ge n 1$.
- b) Si P(x) est scindé à racines simples, alors A est diagonalisable (cf cours).

Réciproquement supposons A diagonalisable. Ainsi, la somme des dimensions des sev propres est n.

Il résulte de a) et du théorème du rang que tout sev propre E_{λ} est de dimension ≤ 1 .

Donc il y a n valeurs propres distinctes, et ainsi, P(x) est scindé à racines simples.

2) a) On a $\chi_A(x) = x^2 - 1$, donc les valeurs propres de A sont 1 et -1.

On a $B = I_2 + 2A$, donc les valeurs propres de B sont 1 + 2 = 3 et 1 - 2 = -1.

b) En résolvant
$$AX = X$$
 et $AX = -X$, on obtient $E_1 = \mathbb{R} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ et $E_{-1} = \mathbb{R} \begin{pmatrix} -1 \\ 1 \end{pmatrix}$.

On peut donc prendre $P = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$ et $D = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

c) Q convient ssi la première colonne est un vecteur propre de E_1 et la seconde un vecteur propre de E_{-1} .

Donc LES matrices Q sont les $\begin{pmatrix} a & -b \\ a & b \end{pmatrix}$, avec $a \neq 0$ et $b \neq 0$.

3) a) Le polynôme $X^3 + X$ annule A.

Comme $X^3 + X = X(X+i)(X-i)$, alors A est diagonalisable et $Sp(A) \subset \{0, i, -i\}$.

Donc $\chi_A(x)$ est de la forme $x^p(x+i)^q(x-i)^r$.

Comme A est une matrice réelle, alors $\chi_A(x)$ est un polynôme réel.

Donc les racines complexes non réelles de χ_A sont 2 à 2 conjuguées avec multiplicité. Donc q=r.

b) Il résulte de a) que tr $A = p \times 0 + q \times i + q \times (-i) = 0$.

Variante: Avec n = p + 2q, le coefficient en x^{n-1} de $\chi_A = x^p(x^2 + 1)^q$ est $-\operatorname{tr} A$, donc $\operatorname{tr} A = 0$.

4) a) Si P(X) annule A, les valeurs propres λ_k sont des racines de P(X), donc $\pi(X)$ divise P(X).

Réciproquement, supposons $P(X) = Q(X)\pi(X)$. Comme A est diagonalisable, $\pi(A) = 0$, alors P(A) = 0.

b) On a $Q(A) = \prod_{k=1}^{r} (A - \mu_k I_n)$, donc det $Q(A) = \prod_{k=1}^{r} \det(A - \mu_k I_n)$.

Alors Q(A) est inversible ssi les $(A - \mu_k I_n)$ sont inversibles, donc ssi $\forall k \in [1, r], \mu_k \notin \operatorname{Sp}(A)$.

Remarque : Cela équivaut à Q et χ_A premiers eux eux (c'est-à-dire sans racine commune).

5) a) On a dim Ker u = n - 1.

On considère la matrice de u dans une base $\mathcal{B} = (e_1, ..., e_n)$ adaptée à $\operatorname{Ker} u \oplus \mathbb{R} e_n = E$.

On a $\operatorname{Mat}_{\mathcal{B}} u = \left(\begin{array}{c|c} O_{n-1} & * \\ \hline O_{1,n-1} & \lambda \end{array}\right)$, et $\lambda = 0$ car u est nipotente (donc 0 est la seule valeur propre).

b) Il résulte de a) que $u(e_n) \in \text{Vect}(e_1, ., .., e_{n-1}) = \text{Ker } u$ et par ailleurs on a $\text{Im } u = \text{Vect}(u(e_n))$.

On a $u(e_n) \neq 0$, et on complète une base $(u(e_n), f_2, ..., f_{n-1})$ de Ker u.

La matrice de u dans la base $\mathcal{B}' = (u(e_n), f_2, ..., f_{n-1}, e_n)$ est la matrice $E_{1,n}$ (la dernière colonne est E_1).

6) a) Si $u \circ v = v \circ u$, alors par le cours, les sev propres de u sont stables par v.

Réciproquement, supposons que les E_{λ_k} sont stables par v.

Or, la restriction de u à E_{λ_i} est l'homothétie λ_j Id, donc commute avec v sur E_{λ_i} .

Donc $u \circ v$ et $v \circ u$ coïncident sur les E_{λ_j} , donc sur $E = E_{\lambda_1} \oplus ... \oplus E_{\lambda_p}$.

b) Les matrices commutant avec A = Diag(1,2,3) sont les matrices diagonales (les droites $\mathbb{R}e_k$ sont stables).

Les matrices commutant avec
$$A = \begin{pmatrix} 1 & & \\ & 2 & \\ & & 2 \end{pmatrix}$$
 sont les matrices $B = \begin{pmatrix} * & 0 & 0 \\ 0 & * & * \\ 0 & * & * \end{pmatrix}$.

c) Tout $v \in C(u)$ est entièrement définie par les restrictions de v aux E_{λ_k} .

Par a), C(u) est isomorphe à $\mathcal{L}(E_{\lambda_1}) \times ... \times \mathcal{L}(E_{\lambda_p})$, donc dim $C(u) = \sum_{k=1}^p m_k^2$.

Remarque : Dans une base adaptée à $E = E_{\lambda_1} \oplus ... \oplus E_{\lambda_p}$, la matrice de v est une matrice diagonale par blocs, avec des blocs arbitraires d'ordres respectifs $m_1, ..., m_p$.

7) a) Comme u est diagonalisable, il existe une base de E composée de vecteurs propres de u.

Ces vecteurs ne peuvent pas tous appartenir à H, car sinon ils n'engendreraient pas E.

b) H est stable par u. La matrice de u dans la base \mathcal{B}' est $A' = \begin{pmatrix} B & 0 \\ \hline 0 & \mu \end{pmatrix}$.

Par égalité des polynômes caractéristiques de A et A', on obtient $\mu = \lambda_n$.

c) La matrice B est diagonalisable car c'est la matrice de la restriction de u (diagonalisable) à H.

En prenant $P = \begin{pmatrix} Q & Z \end{pmatrix}$, avec en dernière colonne Z les coefficients de z_n , on obtient bien une matrice triangulaire de passage vers une base de vecteurs propres de u.

8) a) On note a et n les endomorphismes canoniquement associés à A et N.

On a NA=O, donc $\operatorname{Im} A\subset \operatorname{Ker} N.$ Dans une base $\mathcal B$ adaptée à $\operatorname{Im} A\oplus S=E=\mathbb C^n,$ on a

$$\operatorname{Mat}_{\mathcal{B}} a = \left(\begin{array}{c|c} A_1 & * \\ \hline O & O_r \end{array}\right)$$
 et $\operatorname{Mat}_{\mathcal{B}} n = \left(\begin{array}{c|c} O & * \\ \hline O & M \end{array}\right)$. Comme n nilpotent, $M \in \mathcal{M}_r(K)$ est nilpotent.

Donc
$$\chi_{A+N}(x) = \det\left(\begin{array}{c|c} xI - A_1 & * \\ \hline O & xI - M \end{array}\right) = \det(xI - A_1) \ x^r = \chi_A(x).$$

- b) On a vu dans le cours (propriété néanmoins hors-programme) que A et N sont cotrigonalisables (car commutent et trigonalisables puisque dans $\mathcal{M}_n(\mathbb{C})$). On conclut aisément car la matrice triangulaire supérieure semblable à N est triangulaire supérieure stricte.
- 9) a) On a $\operatorname{Im} w \subset \operatorname{Ker} v$, donc par le th
 du rang $n \dim \operatorname{Ker} w \leq \dim \operatorname{Ker} v$. D'où le résultat.
- b) Posons $v = (u \lambda \operatorname{Id})^2$ et $w = (u \mu \operatorname{Id})$. Comme P(u) = 0, alors $v \circ w = 0$.

Donc dim Ker $v + \dim \operatorname{Ker} w \geq n$. On veut montrer que Ker $v \oplus \operatorname{Ker} w = E$.

Il suffit donc par dimension de prouver que $\operatorname{Ker} v \oplus \operatorname{Ker} w$.

Soit $x \in \text{Ker } v \cap \text{Ker } w$. On a alors $u(x) = \mu x$ et donc $\overrightarrow{0} = (u - \lambda \operatorname{Id})^2(x) = (\lambda - \mu)^2 x$. Donc $x = \overrightarrow{0}$.

c) On note u l'endomorphisme associé à A. Par Cayley-Hamilton, $(X - \lambda)^2(X - \mu)$ annule u.

On se place dans une base \mathcal{B} adaptée à $\operatorname{Ker}((u-\lambda\operatorname{Id})^2) \oplus \operatorname{Ker}(u-\mu\operatorname{Id}) = E = K^3$.

On obtient $\operatorname{Mat}_{\mathcal{B}} u = \begin{pmatrix} B & O \\ \hline O & \mu \end{pmatrix}$, avec $(B - \lambda I_2)^2 = 0$.

Donc $B = \lambda I_2 + N$. On sait que N est semblable à $\begin{pmatrix} \lambda & \varepsilon \\ 0 & \lambda \end{pmatrix}$, où $\varepsilon \in \{0,1\}$. Ce qui permet de conclure.