Interrogation n°6. Corrigé

A.1) Quitte à prolonger f par 0 sur $]1, +\infty[$, on peut supposer $f: [0, +\infty[\to \mathbb{R} \text{ continue par morceaux et bornée.}]$

On a alors
$$L(x) = \int_0^{+\infty} f(t) e^{-tx} dt$$

Le changement de variable u = tx donne $\forall x > 0$, $L(x) = \frac{1}{x}J(x)$, où $J(x) = \int_0^{+\infty} f\left(\frac{u}{x}\right) e^{-u} du$

Posons $g(u,x) = f\left(\frac{u}{x}\right) e^{-u}$. On a alors:

- $\forall x>0,\, u\longmapsto g(u,x)$ est intégrable sur $[0,+\infty[$

-
$$\forall u \ge 0$$
, $\lim_{x \to +\infty} g(u, x) = f(0)$

- Domination : $\forall x > 0, |g(u,x)| \leq Me^{-u} = \varphi(u), \text{ où } M = \sup |f|$. On a bien φ intégrable sur $[0, +\infty[$,

Par convergence dominée, $\lim_{x\to+\infty} J(x) = \int_0^{+\infty} f(0) e^{-u} du = f(0)$. Donc $L(x) \sim \frac{f(0)}{x}$.

A.2) Première méthode (conseillée) : On utilise une IPP : On a $L(x) = -\frac{f(a)e^{-ax}}{x} + \frac{1}{x} \int_0^a f'(t) e^{-tx} dt$.

En appliquant 1) à f', on a $\int_0^a f'(t) e^{-tx} dt \sim \frac{f'(0)}{x}$. Comme $e^{-ax} = \mathfrak{o}_{+\infty} \left(\frac{1}{x}\right)$, on obtient $L(x) \sim \frac{f'(0)}{x^2}$.

Seconde méthode : On a $x^2L(x) = \int_0^{+\infty} xf\left(\frac{u}{x}\right) e^{-u} du$.

Comme f(0) = 0, on a $f(h) \sim f'(0)h$ en h = 0, donc $\lim_{x \to +\infty} xf\left(\frac{u}{x}\right) = f'(0)$.

Par l'IAF, on a $\forall x \in [0, +\infty[, |f(h)| \le Mh, \text{ où } M = \sup_{[0,1]} |f'|$. D'où la domination $\left| x f\left(\frac{u}{x}\right) e^{-u} \right| \le Me^{-u}$.

A.3) On effectue le changement de variable $u = \tan t$, c'est-à-dire $t = \arctan u$.

On a arctan bijection C^1 de [0,1[sur $[0,\frac{\pi}{4}[$ et $dt=\frac{du}{u^2+1}]$

Donc $g(x) = \int_0^1 \frac{e^{-ux}}{u^2 + 1} du$, donc par 1) appliqué à $f(u) = \frac{1}{u^2 + 1}$, on obtient $g(x) \sim \frac{1}{x}$.

B.1) Les fonctions $x \longmapsto f(t) \ e^{-tx}$ sont continues et $\forall x \geq 0, \ |f(t) \ e^{-tx}| \leq |f(t)|$ intégrable sur $[0, +\infty[$.

B.2) a) Soit
$$x > 0$$
. Par IPP, $\int_0^a f(t) e^{-tx} dt = [F(t) e^{-tx}]_0^a + x \int_0^a F(t) e^{-tx} dt$.

F converge en $+\infty$, donc est bornée sur \mathbb{R} .

En faisant tendre a vers $+\infty$, on obtient $L(x) = 0 + x \int_0^{+\infty} F(t) e^{-tx} dt = x \int_0^{+\infty} F(t) e^{-tx} dt$.

b) Posons
$$g(x,t) = F(t) e^{-tx}$$
. On a $\frac{\partial^n g}{\partial x^n}(x,t) = (-1)^n F(t) t^n e^{-tx}$.

Soit a > 0. On a |F(t)| $t^n e^{-tx}| \le \sup |F(t)|$ $\varphi(t)$, où $\varphi(t) = t^n e^{-ta} = O_{+\infty}\left(\frac{1}{t^2}\right)$ intégrable sur $[0, +\infty[$.

Donc L est de classe C^{∞} sur $]0, +\infty[$.

c) On a $\forall x > 0$, $L(x) = \int_0^{+\infty} F\left(\frac{u}{x}\right) e^{-u} du$. On a $\lim_{x\to 0} F\left(\frac{u}{x}\right) e^{-u} = \lambda e^{-u}$, où $\lambda = \lim_{t\to \infty} F = \int_0^{+\infty} f(t) dt = L(0)$.

Et $\forall x > 0$, $\left| F\left(\frac{u}{x}\right) e^{-u} \right| \le M e^{-u}$, où $m = \sup |F|$. Donc $\lim_{x \to 0, X > 0} L(x) = \int_0^{+\infty} \lambda e^{-u} du = \lambda = L(0)$.

Donc L est continue en 0.

C.1) a) La série converge absolument donc converge.

b) Posons
$$f_n(x) = (-1)^n e^{-a_k x}$$
. On a $\int_0^{+\infty} |f_n| = \int_0^{+\infty} f_n = \frac{1}{a_n}$.

Comme $\sum \frac{1}{a_n}$ converge, alors par le th ITT, f est intégrable et $\int_0^{+\infty} f(x) dx = \sum_{n=0}^{+\infty} \int_0^{+\infty} f_n = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n}$.

C.2) a) Résulte du CSSA : La suite $\left(\frac{1}{a_n}\right)_{n\in\mathbb{N}^*}$ est décroissante et tend vers 0.

b) On ne peut pas utiliser le théorème ITT, car la série $\sum \int_0^{+\infty} e^{-a_k x} dx = \sum \frac{1}{a_m}$ peut diverger.

L'idée est d'appliquer le th de cv dominée aux sommes partielles, $S_n(x) = \sum_{k=0}^n (-1)^k e^{-a_k x}$.

Par l'encadrement classique des sommes partielles des séries alternées, on a $\forall n \in \mathbb{N}, 0 \leq S_n(x) \leq e^{-a_0 x} = \varphi(x)$.

Et φ est intégrable sur $]0, +\infty[$. Par convergence dominée, on a donc $\lim_{n\to+\infty} \int_0^{+\infty} S_n(x) \ dx = \int_0^{+\infty} f(x) \ dx$.

Or, par linéarité, $\int_0^{+\infty} S_n(x) dx = \int_0^{+\infty} \sum_{k=0}^n (-1)^k e^{-a_k x} dx = \sum_{k=0}^n \frac{(-1)^k}{a_k}$.

Donc par cv dominée, $\int_0^{+\infty} f(x) dx = \int_0^{+\infty} \lim_{n \to +\infty} S_n(x) dx = \lim_{n \to +\infty} \int_0^{+\infty} S_n(x) dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{a_n} = \lambda.$

Autre méthode : On utilise la propriété sur les restes des séries alternées : $|f(x) - S_n(x)| \le e^{-a_{n+1}x}$.

Donc
$$\left| \int_0^{+\infty} f(x) \ dx - \int_0^{+\infty} S_n(x) \ dx \right| \le \int_0^{+\infty} |f(x) - S_n(x)| \ dx = \int_0^{+\infty} e^{-a_{n+1}x} \ dx = \frac{1}{a_{n+1}} \to 0.$$

On en déduit $\int_0^{+\infty} f(x) dx = \int_0^{+\infty} \lim_{n \to +\infty} S_n(x) dx = \lambda$.

D.1) a) Soit $x \in \mathbb{R}$. Comme g est bornée, $f(t)g(x-t) = O_{-\infty}(f(t))$ et $f(t)g(x-t) = O_{+\infty}(f(t))$.

Comme f est intégrable, alors par comparaison, il en est de même de $t \longmapsto f(t)g(x-t)$.

- b) Pour tout $t \in \mathbb{R}$, l'application $x \longmapsto f(t)g(x-t)$ est continue.
- Domination : $\forall x \in \mathbb{R}, \ \forall t \in \mathbb{R}, \ |f(t)g(x-t)| \leq \varphi(t) = M \ |f(t)|, \ \text{où } M = \sup_{\mathbb{R}} |g|$. Ainsi, φ est intégrable.

On en déduit que f * g est continue.

c) Par a), G_{λ} est bien définie. On a $\forall \lambda > 0$, $G_{\lambda}(x) = \int_{-\infty}^{+\infty} \lambda f(\lambda t) g(x-t) dt = \int_{-\infty}^{+\infty} f(u) g\left(x - \frac{u}{\lambda}\right) du$.

On fixe x. On a $\forall u$, $\lim_{\lambda \to +\infty} f(u)g\left(x - \frac{u}{\lambda}\right) = f(u)g(x)$.

Domination: $\forall \lambda, \left| f(u)g\left(x - \frac{u}{\lambda}\right) \right| \leq M |f(t)|, \text{ où } M = \sup_{\mathbb{R}} |g|.$

On en déduit par convergence dominée que $\lim_{\lambda \to +\infty} G_{\lambda}(x) = \int_{-\infty}^{+\infty} f(u)g(x) \ du = g(x)$.

D.2) a) On a $(f*g)(x) = \int_{\alpha}^{\beta} f(t)g(x-t) dt$, d'où l'existence de (f*g)(x) comme intégrale sur un segment.

b) Soit $[a, b] \subset \mathbb{R}$. On note que $\forall x \in [a, b], \forall t \in [\alpha, \beta], (x - t) \in [a - \beta, b - \alpha] = V$.

On a donc $\forall t \in [\alpha, \beta], |f(t)g(x-t)| \leq \varphi(t), \text{ où } \varphi(t) = |f(t)| \sup_{V} |g|.$ On a φ intégrable sur $[\alpha, \beta]$.

On en déduit que f * g est continue sur \mathbb{R} .

E.1) On a : $\operatorname{Im}(AB) = A(\operatorname{Im} B)$, donc $r = \operatorname{rg} B - \dim(\operatorname{Ker} A \cap \operatorname{Im} B)$.

On a $\dim(\operatorname{Ker} A \cap \operatorname{Im} B) = -\dim(\operatorname{Ker} A + \operatorname{Im} B) + \dim(\operatorname{Ker} A) + \dim(\operatorname{Im} B)$.

Ainsi, $r = \dim(\operatorname{Ker} A + \operatorname{Im} B) - \dim(\operatorname{Ker} A) = \operatorname{rg}(A) + \dim(\operatorname{Ker} A + \operatorname{Im} B) - n$.

E.2) On a max(dim Ker A, rg B) \leq dim(Ker $A + \operatorname{Im} B$) \leq min(n, dim Ker $A + \operatorname{rg} B$).

On a donc $\max(0, p + q - n) \le r \le \min(p, q)$.

Remarque:

Ces valeurs sont atteintes en prenant A et B diagonales avec des coefficients diagonaux dans $\{0,1\}$.

On a au moins p + q - n valeurs de $j \in [1, n]$ tels que $a_{jj} = b_{jj} = 1$.

F.1) a) On a $E = \mathbb{C}Z_1 + \dots + \mathbb{C}Z_n = \mathbb{R}Z_1 + \mathbb{R}iZ_1 \dots + \mathbb{R}Z_n + \mathbb{R}iZ_n$, car $\mathbb{C} = \mathbb{R} + i\mathbb{R}$.

Donc la famille \mathcal{B} est génératrice.

Supposons $\sum_{k=1}^{n} \alpha_k Z_k + \sum_{k=1}^{n} \beta_k (iZ_k) = 0$, avec α_k et β_k réels...

Alors $\sum_{k=1}^{n} (\alpha_k + i\beta_k) Z_k = 0$, donc les $\alpha_k + i\beta_k$ sont nuls, donc les α_k et β_k sont nuls.

Donc la famille \mathcal{B} est libre.

b) $\dim_{\mathbb{R}} \mathcal{M}_2(\mathbb{C}) = 8$.

Remarque: Une base est $(E_{11}, iE_{11}, E_{12}, iE_{12}, E_{21}, iE_{21}, E_{22}, iE_{22})$.

F.2) a) On a $M_j=y_jX$. Comme il existe j tel que $y_j\neq 0$, alors ${\rm Im}\, M=K.X$

On a MZ=0 ssi $\forall i, \sum_{j=1}^n x_i y_j z_j=0$ donc ssi $\sum_{j=1}^n y_j z_j=0$, car $X\neq 0$. Donc $\operatorname{Ker} M=\operatorname{Ker}(Y^T)$.

b) Comme dim $\mathcal{M}_n(K) = n^2$, il suffit de prouver que $(M_{ij})_{1 \leq i \leq n, 1 \leq j \leq n}$ est libre ou génératrice.

Montrons que la famille est génératrice.

Il suffit de prouver que toute matrice canonique E_{kl} est combinaison linéaire des matrices M_{ij} .

Or, on a
$$E_{kl} = E_k E_l^T = (\sum_{i=1}^n x_i X_i)(\sum_{j=1}^n y_j Y_j)^T = \sum_{i=1}^n \sum_{j=1}^n x_i y_j X_i Y_j^T \in \text{Vect}(M_{ij})_{1 \le i \le n, 1 \le j \le n}.$$