Interrogation n°4. Barème sur 24.5 pts

- 1) [2 pts] On considère la fonction f définie $sur]0, +\infty[$ par $f(t) = \frac{(\ln t)^2 e^{-t}}{\sqrt{t+t^2}}$. Justifier que f est intégrable sur $]0, +\infty[$.
- 2) [3 pts] Soit $\alpha \in \mathbb{R}$. On considère la fonction f définie $[\operatorname{sur}]1, +\infty[]$ par $f(t) = \frac{1}{(\ln t) (t-1)^{\alpha} t^2}$. Déterminer, en justifiant avec soin votre réponse, une CNS sur α pour que f soit intégrable sur $[1, +\infty[$.

3) [1.5 pt] Soit
$$\alpha \in \mathbb{R}$$
. On pose $\forall t > 0$, $f(t) = \frac{(t+1)^{1/3} - t^{1/3}}{t^{\alpha}}$.

Donner sans justification détaillée les valeurs de α pour lesquelles f est intégrable sur $]0,+\infty[$.

- 4) [3 pts] Justifier avec soin l'existence de $L = \int_0^{+\infty} \sin(t^2) dt$ et que $L = \frac{1}{4} \int_0^{+\infty} \frac{1 \cos t}{t^{3/2}} dt$.
- 5) [1 pt] On admet $\int_0^{+\infty} \frac{\sin t}{t} dt = \frac{\pi}{2}$. Donner la valeur de $J(\lambda) = \int_0^{+\infty} \frac{\sin(\lambda t)}{t} dt$ pour tout $\lambda \in \mathbb{R}$.
- **6)** Pour tout $n \in \mathbb{N}$, on pose $J_n = \int_0^{+\infty} t^{2n+1} \exp(-t^2) dt$ et $K_n = \int_0^{+\infty} t^{2n} \exp(-t^2) dt$.
- a) [1 pt] En utilisant un changement de variable simple, donner sans justification la valeur de J_n .
- b) [1 pt] Trouver une relation entre K_{n+1} et K_n .
- c) [0.5 pt] On donne $K_0 = \frac{\sqrt{\pi}}{2}$. En déduire sans justification la valeur de K_n (à l'aide de factorielles).
- 7) Soit $f:[0,+\infty[\to\mathbb{R}$ de classe C^1 . On suppose f intégrable et f' bornée
- a) [1 pt] Montrer que $x \longmapsto f(x)f'(x)$ est intégrable sur $[0, +\infty[$.
- b) [1.5 pt] En déduire que f converge vers 0 en $+\infty$.
- 8) [1.5 pt] Soit y > 0. On pose $\phi(y) = \int_y^{+\infty} \frac{\sin u}{u^2} du$. Montrer que $\phi(y) = O_{+\infty} \left(\frac{1}{y^2}\right)$.
- **9)** a) [1 pt] On pose $\forall x \in]0,1], F(x) = \int_x^1 \sin\left(\frac{1}{t}\right) dt$.

Montrer l'existence de $\int_0^1 \sin\left(\frac{1}{t}\right) dt$, c'est-à-dire de $L = \lim_{x\to 0, x>0} F(x)$.

On peut donc prolonger par continuité F en 0, avec F(0) = L. On obtient ainsi $F : [0,1] \to \mathbb{R}$.

- b) [1.5 pt] (\bigstar) Montrer que F est dérivable en 0.
- **10)** On considère la fonction $f:]0, +\infty[\to \mathbb{R}$ définie par $\forall x > 0, f(x) = \int_x^{+\infty} \frac{e^{-t}}{t} dt]$
- a) [1 pt] Montrer que f est de classe C^1 et expliciter f'(x) pour tout x > 0.
- b) [1.5 pt] Montrer que $\int_x^{+\infty} \frac{e^{-t}}{t^2} dt \le \frac{f(x)}{x}$ et en déduire que $f(x) \sim_{+\infty} \frac{e^{-x}}{x}$.
- c) [1 pt] (\bigstar) Déterminer un équivalent de f(x) en $x = 0^+$.
- 11) [1.5 pt] (\bigstar) Soit $f:[0,+\infty[\to\mathbb{R}$ de classe C^1 et strictement positive.

On suppose qu'il existe $\lambda > 1$ tel que $\frac{f'(x)}{f(x)} \sim_{+\infty} -\frac{\lambda}{x}$. Montrer que f est intégrable sur $[0, +\infty[$.