Interrogation n°3. Barème sur 24 pts

- 1) a) [0.5 pt] Donner sans justification le $DL_2(0)$ de $g(u) = \sqrt{1+u}$.
- b) [2 pts] Déterminer le $DL_2(0)$ de $f(x) = \sqrt{\cos(x) + \ln(1+x)}$ sous la forme $f(x) = a + bx + cx^2 + \mathfrak{o}(x^2)$.
- **2)** [1.5 pt] On pose $\forall x > 0$, $f(x) = \ln\left(\frac{x+2}{\sqrt{x^2+3x+4}}\right)$.

Donner un équivalent de f(x) lorsque x tend vers $+\infty$ et un équivalent de f(x) lorsque x tend vers 0^+ .

- 3) Remarque : On pourra supposer connue sans justification la valeur de $\lim_{n\to+\infty} \left(1+\frac{\lambda}{n}+\mathfrak{o}\left(\frac{1}{n}\right)\right)^n$.
- a) [0 pt] Que valent $\tan\left(\frac{\pi}{4}\right)$ et $\tan'\left(\frac{\pi}{4}\right)$?
- b) [2 pts] On considère $x_n = \left(\frac{n-1}{n+1}\right)$ et $y_n = \left(\tan\left(\frac{\pi}{4}x_n\right)\right)^n$. Déterminer $L = \lim_{n \to +\infty} y_n$.
- **4)** [1.5 pt] On considère f définie sur $[0, +\infty[$ par $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) \sin x > 0 \\ 0 \sin x = 0 \end{cases}$

Montrer que f est dérivable en 0. L'application f' est-elle de classe C^1 ?

5) Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} telle que f(0) = 0, f'(0) = 1.

On suppose qu'il existe $p = \min\{n \ge 2 \mid f^{(n)}(0) \ne 0\}$ et que $f^{(p)}(0) < 0$.

On a donc $f''(0) = f^{(3)}(0) = \dots = f^{(p-1)}(0) = 0$ et $f^{(p)}(0) < 0$. On pose $\lambda = -f^{(p)}(0)$, et on a $\lambda > 0$.

a) [1.5 pt] Montrer qu'il existe a > 0 tel que $\forall x \in]0, a], 0 < f(x) < x$.

Suggestion: Utiliser des équivalents en 0^+ .

b) [2 pts] Déterminer un réel $\alpha > 0$ tel que $\frac{1}{f(x)^{\alpha}} - \frac{1}{x^{\alpha}}$ converge vers un réel non nul μ lorsque x tend vers 0^+ .

Conseil: Utiliser un DA de $\frac{1}{f(x)^{\alpha}}$ en utilisant le DL de $(1+h)^{-\alpha}$.

c) [2 pts] On considère une suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0\in]0,a]$ et $u_{n+1}=f(u_n)$.

Justifier que $(u_n)_{n\in\mathbb{N}}$ tend vers 0^+ et donner sans justification (en supposant connu le théorème de Cesàro) un équivalent de u_n (exprimé en fonction de n, α et μ).

6) Pour $n \in \mathbb{N}^*$, on considère le polynôme $P_n(x) = x^3 + n(x^2 - 1)$

On admet que ${\cal P}_n$ admet une unique racine réelle positive, qu'on note $x_n.$

- a) [0.5 pt] Justifier que $x_n \in [0, 1]$.
- b) [1.5 pt] Montrer que $\lim_{n \to +\infty} x_n = 1^-$. Suggestion: Considérer 0 < a < 1 et $P_n(a)$.
- c) [1.5 pt] Déterminer un DL de x_n de la forme $x_n = 1 + \frac{\lambda}{n} + \mathfrak{o}\left(\frac{1}{n}\right)$.

7) [1 pt] Soit $f : [a, b] \to \mathbb{R}$ de classe C^1 , avec a < b. Pour $a \le x < y \le b$, on pose $\Delta(x, y) = \frac{f(y) - f(x)}{y - x}$.

On note $A = \{\Delta(x, y), a \le x < y \le b\}$ l'ensemble des pentes de f. Montrer que $\sup(A) = \sup(f')$.

8) [1.5 pt] Soient $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ deux suites réelles strictement positives.

On suppose
$$\frac{a_{n+1}}{a_n} = 1 + \frac{\alpha}{n} + \mathfrak{o}\left(\frac{1}{n}\right)$$
 et $\frac{b_{n+1}}{b_n} = 1 + \frac{\beta}{n} + \mathfrak{o}\left(\frac{1}{n}\right)$, avec $\alpha < \beta$.

- a) Montrer que pour n assez grand, on a : $\frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}$.
- b) En déduire que $a_n = O(b_n)$.
- 9) Soit $f:[0,1]\to\mathbb{R}$ de classe C^2 . On pose $M=\sup|f'|$
- a) [1 pt] On considère [a, b] un segment inclus dans [0, 1].

En utilisant l'inégalité des accroissements finis, démontrer : $\left| \int_a^b f(t) \ dt - (b-a)f(b) \right| \leq \frac{1}{2}(b-a)^2 M$.

b) [1 pt] On considère une subdivision $\sigma = (x_0, x_1, ..., x_n)$ de [0, 1], c'est-à-dire $0 = x_0 < x_1 < ... < x_n = 1$

Le pas de la subdivision est défini par $\Delta = \max_{1 \le k \le n} (x_k - x_{k-1})$. Montrer que

$$\sum_{k=1}^{n} (x_k - x_{k-1})^2 \le \Delta$$

et préciser les cas d'égalité.

c) [0.5 pt] Avec les notations du b), on pose $S = \sum_{k=1}^{n} (x_k - x_{k-1}) f(x_k)$ (somme de Riemann) Montrer que $\left| \int_0^1 f(t) \ dt - S \right| \le \frac{1}{2} \Delta M$.

10) [1 pt] (\bigstar) On note ici $f(x) \prec \prec g(x)$ pour signifier $f(x) = \mathfrak{o}_{+\infty}(g(x))$.

Proposer sans justification une fonction f(x) telle que lorsque x tend vers $+\infty$, on a

$$\forall \alpha > 0, \quad x^{\alpha} \prec \prec f(x) \prec \prec \exp(\alpha x)$$

11) [1.5 pt] (★)

Soit $f: \mathbb{R} \to \mathbb{R}$ de classe C^2 telle que f(0) = f'(0) = 0 et $\lambda = f''(0) > 0$. Montrer qu'il existe un cercle Γ (de rayon non nul) à la fois tangent au graphe de f en (0,0) et situé au-dessus du graphe de f.

Indication : Démontrer une inégalité de la forme $\forall x \in [-r, r], x^2 + f(x)^2 \ge 2rf(x)$, où r > 0.