Interrogation n°2. Corrigé

1) Par le TAF, toute pente est une dérivée, donc $D \subset \Delta$.

Par définition, toute dérivée est une limite de pentes, donc $\Delta \subset \overline{D}$.

Exemple: Avec $f(x) = x^2$ sur [0,1], on a $\Delta = [0,2]$ et D =]0,2[.

2) a) On a
$$\frac{x-1}{x+1} = 1 - \frac{2}{x+1}$$
, donc $F(x) = x - 2\ln(|x+1|)$.

b) Avec $u = e^x$ c'est-à-dire $x = \ln u$,

$$\int_0^1 \frac{dx}{e^x + 1} = \int_1^e \frac{dx}{u(u+1)} = \int_1^e \left(\frac{1}{u} - \frac{1}{u+1}\right) du = \left[\ln\left(\frac{u}{u+1}\right)\right]_1^e = \ln\left(\frac{e}{e+1}\right) + \ln 2 = \ln\left(\frac{2e}{e+1}\right).$$

3) a) On a
$$f'(x) \sim \frac{1}{2} \lambda x^2$$
 et $f'(x) \sim \lambda x$.

b) f est strictement positive au voisinage de 0^+ . Comme f est croissante, on a $\forall x \in]0,1], f(x) > 0$.

Donc g est de classe C^1 sur [0,1] comme composée de fonctions de classe C^1 .

On a aussi
$$\forall x > 0, \ g'(x) = \frac{f'(x)}{2\sqrt{f(x)}} \sim \frac{\sqrt{2}\lambda x}{2\sqrt{\lambda x^2}} = \sqrt{\frac{\lambda}{2}}.$$

Par le th de la limite de la dérivée (et prolongement C^1), g est C^1 sur [0,1] et $g'(0) = \sqrt{\frac{\lambda}{2}}$.

Remarque : La dérivabilité de g en 0 peut aussi se déduire du $DL_1(0)$ de $g(x) = \sqrt{f(x)} \sim \sqrt{\frac{\lambda}{2}}x$.

4) $\frac{1}{n}S_n$ est une somme de Riemann de $x \mapsto x^p$ fonction continue sur [0,1].

Donc
$$\lim_{n\to+\infty} \frac{1}{n} S_n = \int_0^1 x^p \ dx = \frac{1}{p+1}$$
, donc $S_n \sim \frac{n}{p+1}$.

5) On a:
$$\frac{f(c) - f(a)}{c - a} = \lambda \frac{f(b) - f(a)}{b - a} + (1 - \lambda) \frac{f(c) - f(b)}{c - b}$$
, où $\lambda = \frac{b - a}{c - a} \in [0, 1]$.

6) a) On a
$$x = \lim_{n \to +\infty} k_n \ a_n$$
, où $k_n = \left\lfloor \frac{x}{a_n} \right\rfloor \in \mathbb{Z}$. Ainsi, $k_n \ a_n \in A$.

b) On vérifie aisément que $\forall n \in \mathbb{Z}, f(x+n) = f(x)$. Or, tout réel x s'écrit x = r + n, où $r \in [0,1[$.

Ainsi, $f(\mathbb{R}) = f([0,1])$. Comme $[0,1] \subset \mathbb{R}$, alors $f(\mathbb{R}) = f([0,1])$.

Or, par continuité, f([0,1]) est un segment. Donc f est bien bornée et atteint ses bornes.

c) On a
$$\forall (n,m) \in \mathbb{Z}^2$$
, $f(x+n+m\sqrt{2})=f(x)$. Ainsi, $\forall a \in A, f(a)=f(0)$.

Comme A est dense, tout réel x est limite d'une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A.

Donc par continuité de f, on a $f(x) = \lim_{n \to +\infty} f(a_n) = f(0)$. Ainsi, f est constante.

7) a) Supposons par l'absurde |z|<1. On a $|a_0|=\left|-\sum_{k=1}^n a_k z^k\right|<\sum_{k=1}^n |a_k|$, d'où une contradiction.

b) On a
$$P(X) = (X-1)P(X) = -b_0 + \sum_{k=1}^{n} (b_{k-1} - b_k)X^k + b_n X^{n+1}$$
.

On a
$$\sum_{k=1}^{n} |b_{k-1} - b_k| + |b_n| \le \sum_{k=1}^{n} (b_{k-1} - b_k) + b_n = b_0 = |b_0|$$
.

Par a), les racines complexes de P sont de module ≥ 1 , donc a fortiori les racines de Q aussi.

8) a) L'application $F: x \longmapsto \int_a^x f(t) \ dt$ est une bijection strictement croissante de [a,b] sur [0,M].

Donc pour tout $\theta \in [0,1]$, on a $\theta M \in [0,M]$, donc il existe un unique réel x tel que $F(x) = \theta M$.

b) On a
$$F(x(\theta)) = \theta M$$
, donc $x(\theta) = F^{-1}(\theta M)$.

On sait par le cours de sup que F^{-1} est de classe C^1 (car F bijection de classe C^1 et F' = f > 0).

Donc x est de classe
$$C^1$$
, et on a $x'(\theta) = \frac{M}{F'(F^{-1}(\theta M))} = \frac{M}{f(x(\theta))}$.

Remarque: Si on sait que x est C^1 , on peut aussi retrouver la relation en dérivant $F(x(\theta)) = \theta M$.

9) a) f' prend une valeur positive sinon elle serait décroissante, ce qui contredirait $\lim_{\infty} f = +\infty$.

De même, f prend une valeur négative car $\lim_{-\infty} f = +\infty$. Par le TVI, f' s'annule.

- b) Le graphe de f est au-dessus de sa tangente en x_0 , donc $f(x) \ge f(x_0)$, d'où le résultat.
- c) Montrons que Δ est convexe. Soient a et $b \in \Delta$. On a $f(a) = f(b) = f(x_0)$.

La corde de f sur [a, b] est située au-dessus du graphe de f, donc $\forall x \in [a, b], f(x) \leq f(x_0)$.

Mais par b), on a $f(x) \ge f(x_0)$. Donc $[a, b] \subset \Delta$.

- f est nécessairement continue, donc Δ est fermé (par passage à la limite des inégalités larges).

Par la divergence en l'infini, Δ est borné. Donc Δ est un intervalle non vide fermé borné, donc un segment.

10) Comme $f(x) \sim f'(0) x$, alors f(x) > 0 sur un voisinage $[0, \alpha]$ de 0 relativement à [0, 1].

On considère alors $a = \inf A$, où $A = \{x \in [\alpha, 1] \mid f(x) = 0\}$ partie de \mathbb{R} non vide et minorée.

Comme a est adhérent à A, alors $a \in [\alpha, 1]$ et est un zéro de f comme limite de zéros.

Ainsi, f(a) = 0. Par définition, on a $\forall x \in [\alpha, a[, f(x) \neq 0.$

Par a), on obtient donc $\forall x \in]0, a[, f(x) \neq 0.$

Par le TVI, f est de signe constant sur]0, a[. Donc, avec a), on obtient bien $\forall x \in]0, a[$, f(x) > 0.

11) a) On a $u_n \le u_{pq} + u_r \le qu_p + u_r$, car pq = p + p + ... + p (q fois).

Donc
$$\frac{u_n}{n} \le \frac{u_p}{n} + \frac{u_r}{n} \le \frac{u_p}{n} + \frac{M_p}{n}$$
, où $M_p = \max(u_0, ..., u_{p-1})$.

b) L existe car $\left\{\frac{u_n}{n}, n \in \mathbb{N}^*\right\}$ est non vide et minorée par 0. Par définition de L, on a $\frac{u_n}{n} \geq L$.

Soit $\varepsilon > 0$. Il existe p tel que $\frac{u_p}{p} \le L + \varepsilon$. Donc $\frac{u_n}{n} \le \frac{u_p}{p} + \frac{M_p}{n} \le L + 2\varepsilon$ pour n assez grand.

On obtient bien $L \leq \frac{u_n}{n} \leq L + 2\varepsilon$ pour n assez grand. Comme ε est arbitraire, $\lim_{n \to +\infty} \frac{u_n}{n} = L$.

12) a)
$$\left| \int_a^b f(t) \ dt - (b-a)f(b) \right| = \left| \int_a^b f(t) - f(b) \ dt \right| \le \int_\alpha^b |f(t) - f(b)| \ dt.$$

Par l'IAF, $|f(t) - f(b)| \le |t - b| M$. Donc $\int_a^b |f(t) - f(b)| dt \le \int_a^b |t - b| M = \int_a^b (b - t) M dt$.

On conclut en utilisant $\int_a^b (b-t) dt = \int_0^{b-a} u du = \frac{1}{2} (b-a)^2$.

b)
$$\sum_{k=1}^{n} (x_k - x_{k-1})^2 = \sum_{k=1}^{n} (x_k - x_{k-1}) \Delta = \Delta \sum_{k=1}^{n} (x_k - x_{k-1}) = \Delta$$
.

Il y a égalité ssi $\forall k, (x_k - x_{k-1}) = \Delta$, c'est-à-dire ssi σ est la subdivision régulière, et dans ce cas, $\Delta = \frac{1}{n}$.

c) Par Chasles,
$$\int_0^1 f(t) dt - S = \sum_{k=1}^n \left(\int_{x_{k-1}}^{x_k} f(t) dt - (x_k - x_{k-1}) f(x_k) \right)$$
.

Par a),
$$\left| \int_{x_{k-1}}^{x_k} f(t) dt - (x_k - x_{k-1}) f(x_k) \right| \le \frac{1}{2} (x_k - x_{k-1})^2 M$$
.

Donc par b),
$$\left| \int_0^1 f(t) dt - S \right| \le \frac{1}{2} M \sum_{k=1}^n (x_k - x_{k-1})^2 \le \frac{1}{2} M \Delta$$
.

Remarque: Ainsi, S converge vers $\int_a^b f$ lorsque $\Delta \to 0$. En réalité, cette propriété est vraie pour toute fonction continue par morceaux (mais la majoration précédente ne s'applique plus, bien sûr).