Interrogation n°2. Corrigé

1) a) On fait ε vers 0^+ : par passage à la limite des inégalités larges, $x \leq y$.

Remarque: Sans utiliser le th de passage à la limite, on peut aussi faire un raisonnement par l'absurde.

b) On considère $\alpha < \beta$. On pose $x = \frac{1}{2}(\alpha + \beta)$ et $\varepsilon = \frac{1}{4}(\beta - \alpha) > 0$.

Par densité, il existe $a \in A$ tel que $x - a \le \varepsilon$, d'où $\alpha < a < \beta$.

c) On a
$$\ln''(x) = -\frac{1}{x^2}$$
. Par concavité du ln, $\ln\left(\frac{x^p}{p} + \frac{y^q}{q}\right) \ge \frac{1}{p}\ln(x^p) + \frac{1}{q}\ln(x^q)$.

d) On sait que $e^u \ge 1 + u$. La première inégalité résulte de $0 \le 1 + \frac{x}{n} \le e^{x/n}$.

La seconde inégalité résulte de $0 < 1 - \frac{x}{n} \le e^{-x/n}$.

On met ensuite les inégalités aux puissances n et -n respectivement (les termes étant positifs).

e) On a $z = \exp(2\pi i \alpha)$, où $\alpha = \frac{\theta}{2\pi}$.

Soit $n \in \mathbb{N}^*$, on approche α par un rationnel $\frac{k}{n}$, c'est-à-dire un multiple de $\frac{1}{n}$.

On prend donc $\forall n \in \mathbb{N}^*, z_n = \exp\left(2\pi i \frac{\lfloor n\alpha \rfloor}{n}\right)$, où $\alpha = \frac{\theta}{2\pi}$.

2) Par le théorème des bornes atteintes, il existe $x_0 \in [a, b]$ tel que $f(x_0) = M$.

Par continuité, il existe un voisinage J de x_0 (relativement à [a,b]) tel que $\forall x \in J, f(x) \geq M - \varepsilon$.

On peut conclure, car un voisinage est un intervalle de longueur non nulle.

Pour la suite : On a alors β $(M-\varepsilon)^n \leq \int_I f(t)^n dt \leq \int_a^b f(t)^n dt \leq (b-a) M^n$, car $\sup(f^n) = M^n$.

On met à la puissance $\frac{1}{n}$, les termes étant tous positifs.

c) On a $\lim_{n\to+\infty} (b-a)^{1/n} M = M$, donc $I_n \leq M + \varepsilon$ pour n assez grand.

On a $\lim_{n\to+\infty}\beta^{1/n}$ $(M-\varepsilon)=M-\varepsilon$, donc $I_n\geq M-2\varepsilon$ pour n assez grand. D'où le résultat.

3) a) Par l'inégalité de Taylor-Lagrange, $M=\frac{1}{2}\sup_{[0,1]}|f''|$ convient.

b) On considère $\varphi:]0,1[\to \mathbb{R} \ x \longmapsto \frac{f(x)}{x(1-x)}.$

On prolonge φ par continuité en x=0 et x=1 par $\varphi(0)=f'(0)$ et $\varphi(1)=-f'(1)$.

Par la propriété des bornes atteintes (Weierstrass), φ est bornée sur [0,1].

Il existe donc un réel positif M tel que $\forall x \in [0,1], |\varphi(x)| \leq M$.

On obtient donc bien $\forall x \in [0,1], |f(x)| \leq Mx(1-x)$, l'inégalité étant évidente en x=0 et x=1.

Remarque : Ce type de preuve convient aussi au a) avec $\varphi(x) = \frac{f(x)}{x^2}$ prolongée par $\varphi(0) = \frac{1}{2}f''(0)$.

4) Soit $\varepsilon > 0$. Il existe $p \in \mathbb{N}$ tel que $\forall n \geq p, |a_n| \leq \varepsilon b_n$.

Alors $\forall n \geq p, |A_n| \leq |A_p| + \varepsilon \sum_{k=p+1}^n b_k \leq |A_p| + \varepsilon B_n.$

Comme $\lim_{n\to+\infty} B_n = +\infty$, alors $|A_p| \le \varepsilon B_n$ pour n assez grand. Donc $|A_n| \le 2\varepsilon B_n$ pour n assez grand.

Remarque : Il s'agit en fait ici de la propriété de Cesàro pour une pondération variable :

$$\frac{A_n}{B_n} = \frac{\sum_{k=0}^{n} u_k b_k}{\sum_{k=0}^{n} b_k}, \text{ où } u_n = \frac{a_n}{b_n} \to 0. \text{ Comme } \lim_{n \to +\infty} \sum_{k=0}^{n} b_k = +\infty, \text{ alors } \lim_{n \to +\infty} \frac{A_n}{B_n} = 0.$$

Remarque : On en déduit que si $a_n \sim b_n$, alors $A_n \sim B_n$.

En effet, on a $(a_n \sim b_n) = \mathfrak{o}_{+\infty}(b_n)$. Donc par a), $A_n - B_n = \mathfrak{o}(B_n)$, c'est-à-dire $A_n \sim B_n$.

5) Première preuve : On a $\forall n \in \mathbb{N}^*$, $f\left(\frac{1}{n}\sum_{k=1}^n \varphi\left(\frac{k}{n}\right)\right) \leq \frac{1}{n}\sum_{k=1}^n f\left(\varphi\left(\frac{k}{n}\right)\right)$.

Par les sommes de Riemann (appliquées à φ et $f \circ \varphi$, et par continuité de f), on obtient par passage à la limite des inégalités larges l'inégalité demandée (appliquée inégalité de Jensen).

Seconde preuve : (directe) Posons $\mu = \int_0^1 \varphi(t) dt$.

On considère la tangente L à f en μ . On a $f(x) \ge f(\mu) + (x - \mu)f'(\mu)$.

Donc $f(\varphi(t)) \ge f(\mu) + (f(t) - \mu)f'(\mu)$. En intégrant sur [0, 1], on obtient bien $\int_0^1 f(\varphi(t)) \ge f(\mu) + 0$.

6) a) Comme A n'est pas vide et majoré, il existe $\lambda = \sup A$. Par (ii), $\lambda \in A$, car λ est adhérent à A.

Supposons par l'absurde $\lambda < 1$. Alors par (iii), il existe $\alpha > 0$ tel que $[\lambda, \lambda + \alpha] \subset A$.

Ce qui contredit $\lambda = \sup A$. Donc $\lambda = 1$, et a fortiori $1 \in A$.

Remarque : Plus généralement, on a A = [0, 1]. En effet, pour tout $a \in [0, 1]$, on peut appliquer le raisonnement précédent à $A' = A \cap [0, a]$ pour prouver que $a \in A' \subset A$.

Une variante consiste à utiliser $\Delta = \{a \in [0,1] \mid [0,a] \subset A\}$.

On vérifie que Δ vérifie les trois propriétés. Donc $1 \in \Delta$, c'est-à-dire A = [0, 1].

- b) (i) On a bien $0 \in A$.
- (ii) Soit une suite $(a_n)_{n\in\mathbb{N}}$ d'éléments de A convergeant vers a.

On a $a_n \in [0,1]$ et $f(a_n) - f(0) \ge -\varepsilon a_n$, donc par passage à la limite, $a \in [0,1]$ et $f(a) - f(0) \ge -\varepsilon a_n$

On en déduit que $a \in A$.

(iii) Soit $a \in A \cap [0, 1[$. Comme $f'_d(a) \ge 0 > -\varepsilon$, alors il existe $\alpha > 0$ tel que $\forall x \in]a, a + \alpha]$, $\frac{f(x) - f(\lambda)}{x - \lambda} \ge -\varepsilon$. Donc $\forall x \in]a, a + \alpha]$, $f(x) - f(a) \ge -\varepsilon(x - a)$.

Comme $a \in A$, on a $f(a) - f(0) \ge -\varepsilon a$. En sommant, on obtient $\forall x \in]a, a + \alpha], f(x) - f(0) \ge -\varepsilon x$.

Par a), on a donc $1 \in A$

On obtient ainsi $f(1) - f(0) \ge -\varepsilon$, pour tout $\varepsilon > 0$. Par 1) a), on obtient $f(1) - f(0) \ge 0$.

Remarque: De même qu'à la remarque du a), on peut en déduire en fait que f est croissante.

7) Il s'agit de prouver que l'ensemble Γ des pentes $\Delta(x,y) = \frac{f(y) - f(x)}{y - x}$, avec $\alpha \le x < y \le \beta$, est borné. Or, par l'inégalité des pentes, $\Delta(a,\alpha) \le \Delta(\alpha,x) \le \Delta(x,y) \le \Delta(y,\beta) \le \Delta(\beta,b)$.

Remarque culturelle : On en déduit ainsi que f est continue sur]a,b[.

Mais c'est faux sur [a, b]: par exemple, en prenant f(a) = 1 et f(x) = 0 si $x \in]a, b]$.

8) Soient $x \in \overline{\overline{A}}$. Montrons que $x \in \overline{A}$, c'est-à-dire x est adhérent à A.

Soit $\varepsilon > 0$. Il existe $b \in \overline{A}$ tel que $|x - b| \le \frac{1}{2}\varepsilon$. Et il existe $a \in A$ tel que $|b - a| \le \frac{1}{2}\varepsilon$.

Par inégalité triangulaire, $|x-a| \leq \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$. Comme ε est arbitraire, $x \in \overline{A}$.

Remarque: Ainsi, \overline{A} est une partie fermée. C'est la plus petite partie fermée contenant A.

9) a) $\Delta = \{n \in \mathbb{N}, v_n \leq x\}$ est non vide $(0 \in \Delta)$ et majoré (car $\lim_{n \to +\infty} v_n = +\infty$).

Donc il existe $p = \max \Delta$. On a alors $v_p \le x \le v_{p+1}$, et donc $|x - v_p| \le v_{p+1} - v_p \le \varepsilon$.

b) Comme -A = A, alors il suffit de prouver que tout réel positif x est adhérent à A.

Soit $\varepsilon > 0$. Il existe $q \in \mathbb{N}$ tel que $\forall n \geq q, u_{n+1} - u_n \leq \varepsilon$.

On pose $v_n = u_n - u_q$. La suite $(v_n)_{n \ge q}$ vérifie les propriétés du a).

Donc il existe $p \in \mathbb{N}$ tel que $|x - v_p| \le \varepsilon$, c'est-à-dire $|x - (u_p - u_q)| \le \varepsilon$. D'où $x \in \overline{A}$.