Interrogation n°1. Corrigé

1) On a $z^6 = -1 = e^{i\pi} \operatorname{ssi} z \in e^{i\pi/6} U_6$.

Donc les racines complexes de P sont $e^{i\pi/6}$, i, $e^{5i\pi/6}$ et leurs conjugués.

D'où
$$P(X) = (X^2 + 1)(X^2 - 2X\cos\left(\frac{\pi}{6}\right) + 1)(X^2 - 2X\cos\left(\frac{5\pi}{6}\right) + 1) = (X^2 + 1)(X^2 - \sqrt{3}X + 1)(X^2 + \sqrt{3}X + 1).$$

2) a) On étudie la fonction $P: x \longmapsto 2x^3 + x - 1$.

On vérifie que P est strictement croissante sur \mathbb{R} , et induit donc une bijection de \mathbb{R} sur \mathbb{R} .

Donc P admet une unique racine réelle α . Comme P(1) < 0 et $\lim_{+\infty} = +\infty$, alors $\alpha > 1$.

b) Les racines de P sur \mathbb{C} sont α , β et $\overline{\beta}$. Donc $\alpha\beta\overline{\beta} = \frac{4}{2} = 2$ et $\alpha + 2\operatorname{Re}\beta = 0$.

Comme $\alpha > 1$, alors $|\beta|^2 < 2$, d'où $|\beta| < \sqrt{2}$. D'autre part $|\beta| \ge |\operatorname{Re} \beta| = \frac{1}{2} |\alpha| > \frac{1}{2}$.

3) a) On a $P(X)^2 = \sum_{0 \le i \le n, 0 \le j \le n} a_i a_j x^{i+j}$. Donc $c_k = \sum_{0 \le i \le n, 0 \le j \le n, i+j=k} a_i a_j$.

Remarque:

Avec j=k-i, on a $0\leq j\leq n,$ c'est-à-dire $k-n\leq i\leq k$ ce qui s'ajoute à la condition $0\leq i\leq n.$

On obtient donc bien la somme des $a_i a_{k-i}$ pour $\max(0, k-n) \le i \le \min(n, k)$.

D'où en fait $\forall k \in [0, 2n]$, $c_k = \sum_{i=\max(0, k-n)}^{\min(n, k)} a_i a_{k-i}$.

b) On applique a) avec $P(X) = (1+X)^n = \sum_{k=0}^n {n \choose k} X^k$. On a $P(X)^2 = (1+X)^{2n}$.

 λ est le coefficient en X^k de $P(X)^2$, donc vaut $\binom{2n}{k}$.

Remarque : L'exemple le plus connu est $\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i} = \sum_{i=0}^{n} \binom{n}{i}^2$.

4) La condition s'écrit P(0) = L(0), P(1) = L(1), P'(0) = L'(0) et P'(1) = L'(1).

Ce qui équivaut à $(X-1)^2(X-2)^2$ divise P(X)-L(X).

Donc les polynômes cherchés sont (par degré) les $P(X) = X + \lambda (X-1)^2 (X-2)^2$, où $\lambda \in \mathbb{R}$.

5) a) On a $B'(a_k) = \prod_{j \neq k} (a_k - a_j)$.

Rappel: On dérive un produit en sommant tous les termes obtenus en dérivant un seul facteur.

On pourrait aussi utiliser ici $B'(a_k) = \lim_{x \to a_k} \frac{B(x)}{(x - a_k)}$.

b) Donc $\frac{B(X)}{B'(a_k)(X-a_k)} = \prod_{j \neq k} \frac{X-a_j}{a_k-a_j} = L_k(X)$ polynôme de Lagrange.

On sait par le cours que $\forall P \in K_{n-1}[X], P(X) = \sum_{k=1}^{n} P(a_k) L_k(X)$.

- c) On prend P = 1 et on considère le coefficient en X^{n-1} du a). On obtient $0 = \sum_{k=1}^{n} \frac{1}{B'(a_k)}$.
- **6)** a) Par d'Alembert-Gauss, P admet n racines sur \mathbb{C} comptées avec multiplicité.

Par hypothèse, elles sont réelles. Donc P est scindé sur \mathbb{R} .

b) Supposons P scindé sur \mathbb{R} , c'est-à-dire $P=\prod_{k=1}^n (X-a_k)$, où les a_k sont réels.

Soit $z \in \mathbb{C}$. Alors $|P(z)| \ge \prod_{k=1}^{n} |z - a_k| \ge \prod_{k=1}^{n} |\text{Im}(z - a_k)| = |\text{Im } z|^n$.

 $\mathbb{P}^{(n)}$

7) On veut que Q(X) = P(X) - c soit scindé à racines simples, c'est-à-dire Q et Q' sans racines communes.

Or, Q'(X) = P'(X). Donc Q est scindé à racines simples ssi les racines de P' ne sont pas racines de P.

Donc $c \in \mathbb{C}$ convient ssi $c \notin \Delta = \{P(z), z \text{ racine de } P'\}$. On exclut ainsi qu'un nombre fini de valeurs.

8) a) (unicité) P_n est déterminé par ses valeurs sur [-1,1] infini, donc est unique.

(existence) On a $\sin(nx) = \operatorname{Im}((\cos x + i\sin x)^n) = \sum_{k \text{ impair}} (\cos x)^{n-k} (\sin x)^k i^{(k-1)/2}$.

Donc $\sin(nx) = \sum_{j>0} {n \choose 2j+1} (1-\sin^2 x)^{m-j} (\sin x)^{2j+1} (-1)^j$.

D'où $P_n(X) = \sum_{j \geq 0} \binom{n}{2j+1} (X^2 - 1)^{m-j} X^{2j+1}$ convient. Il est de degré n, car $\sum_{j \geq 0} \binom{n}{2j+1} = 2^{n-1} \neq 0$.

Remarque : Une autre méthode consiste à procéder paru récurrence d'ordre 2, via la formule de trigo : $\sin((n+2)\theta) + \sin((n-2)\theta) = 2\sin(n\theta) \cos(2\theta) = 2(1-2\sin(\theta)^2) \sin(n\theta)$.

On obtient $(P_n)_{n\in\mathbb{N}}$ définie par $P_{-1}=-X,\,P_1=X$ et $\forall n\in\mathbb{N},\,P_{n+2}=2(1-2X^2)P_n-P_{n-2}$

b) Posons $\forall k \in \mathbb{Z}, x_k = \sin\left(\frac{k\pi}{n}\right)$. Alors $P_n(x_k) = \sin(k\pi) = 0$.

 $x_{-m},...,x_{-1},x_0,x_1,...,x_m$ sont deux à deux distincts.

Donc par degré, ce sont les seules racines de P_n et elles sont simples.

Donc
$$P_n(x) = \lambda X \prod_{k=1}^m (X - x_k) \prod_{k=1}^m (X + x_k) = \lambda X \prod_{k=1}^m (X^2 - x_k^2)$$
.

c) Il résulte de b) que $P_n(x)$ est de la forme $\mu X \prod_{k=1}^m \left(1 - \frac{X^2}{x_k^2}\right)$, où μ réel non nul.

On obtient ainsi $\sin(nx) = \mu(\sin x) \prod_{k=1}^{m} \left(1 - \frac{(\sin x)^2}{\sin(k\pi/n)^2}\right)$.

En faisant tendre x vers 0^- , on a $nx \sim \mu x$, donc $\mu = n$.

- **9)** a) On veut $z = (1 \lambda)x + \lambda y$, c'est-à-dire $\lambda = \frac{z x}{y x}$.
- b) On a par hypothèse $f((1-\lambda)x + \lambda y) = (1-\lambda)f(x) + \lambda f(y) = \frac{y-z}{y-x}f(x) + \frac{z-x}{y-x}f(y) = L(z)$.

L est affine (il s'agit d'ailleurs de la droite d'interpolation de f en x et y). Donc f = L sur [x, y].

- c) On a donc f'' nulle sur l'intervalle]x, y[, et comme]x, y[est arbitraire, f'' = 0, c'est-à-dire f est affine sur \mathbb{R} .
- d) Soient des réels $x_1, ..., x_n$ et des réels positifs $\alpha_1, ..., \alpha_n$ de somme 1.

On considère une v.a. X à valeurs dans $\{x_1,...,x_n\}$ telle que $P(X=x_i)=\alpha_i$.

Alors g(E(X)) = E(g(X)) s'écrit : $g(\sum_{i=1}^{n} \alpha_i x_i) = \sum_{i=1}^{n} \alpha_i g(x_i)$. Par la question c), g est affine.

10) On a $\int_0^1 \rho_n(t) \ f(t) \ dt - f(0) = \int_0^1 \rho_n(t) \ g(t) \ dt$, où g(t) = f(t) - f(0). Posons $M = \sup_{t \in [0,1]} |g(t)|$.

Soit $\varepsilon > 0$. Il existe $\alpha > 0$ tel que $\forall t \in (0, \alpha], g(t) \leq \varepsilon$.

$$\left| \int_0^1 \rho_n(t) \ g(t) \ dt \right| \le \left| \int_0^\alpha \rho_n(t) \ g(t) \ dt \right| + \left| \int_\alpha^1 \rho_n(t) \ g(t) \ dt \right| \le \varepsilon + M \int_\alpha^1 \rho_n(t) \ dt.$$

Comme $\lim_{n\to+\infty} \int_{\alpha}^{1} \rho_n(t) dt = 0$, alors $\left| \int_{0}^{1} \rho_n(t) g(t) dt \right| \leq 2\varepsilon$ pour n assez grand. D'où le résultat.